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Introductory physics course usually covers simple circuit theory and hence the stu-

dent faces problems of finding the equivalent resistance of two resistors placed in parallel.

The relationship is:

1/Rpn = 1/R, + 1/R 2 Eq.l

The instructor's task is to find 'nice' values for R,, R 2 and Req such that the student

doesn't need to waste time punching calculator keys. If the instructor restricts R,,

R 2 and R„n such that they are elements of the natural numbers, then the calculation

is much simpler for the student. By restricting the resistor values in this way, we find

that we have a diophantine equation. The problem of finding a general solution to

the diophantine equation boils down to determining what conditions R, and R 2 must

meet in order for R„n to be a natural number. We have found a general solution
cq

to this problem.

Our solution can benefit the physics educator as well as the mathematician. For

the introductory physics educator, our solution allows him to design assignment and

test problems which illustrate the physics concepts with a minimum of calculation time.

A quick search of introductory physics texts shows that the same 'nice' values are

abused in example after example. Our solution allows an instructor to generate un-

familiar values which are still very 'nice.' To the math educator, our equation and

solution offer a new problem in diophantine equations. In mathematics, classic diophan-

tine problems stem from geometry. An example is the problem of finding integer valued

solutions to the Pythagorean equation. Our equation offers the student a more tangible

problem. Also, many of the key techniques in number theory are illustrated by our

method of solution. With these benefits in mind, we turn to the solution.

We start by rewriting the equation form as such:

Req = R,R 2/(R, + R 2 ) Eq.2

Next, let D be the greatest common factor between R, and R 2 . We can write:

R, = DM R 2 = DN Eq.3

where M and N are the remaining factors of R, and R 2 respectively. We can see that

M and N must be relatively prime, (greatest common factor equals 1) for otherwise,

we could extract the common factor from M and N and make a further contribution

to D. We substitute these expressions for R, and R 2 into Eq.2.

R-n = DMN/(M + N) Eq.4cq

For R to be a natural number, then sum (M + N) must evenly divide some combina-

tion of D, M, and N. Since we cannot extract a common factor from M and N, then
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the sum (M + N) cannot divide any combination which includes M or N. Therefore,

the sum (M + N) must divide D. So we can write:

D = k(M + N) Eq.5

where k is some natural number. Now we substitute Eq.5 into Eq.3. After doing this

we have:

R, = kM (M + N)

R 2 = kN (M + N) Eq.6

Req = kMN

This is the general solution to our diophantine equation.

For any values of M and N such that M and N are relatively prime natural numbers,

we can generate a solution to our equation. We now define a solution, where k = 1,

to be a primitive solution. Of course all positive integer multiples of a primitive solu-

tion are also solutions to the equation. We can show that each integer valued solution

of Eq.l can be generated by Eq.6 from exactly one combination of M and N.

PROOF:

Let M and N be relatively prime natural numbers. Likewise for M' and N'.

R, = kM(M + N)R,' = k'M'(M' + N') Eq.7

R 2 = kN(M + N) R 2

' = k'N'(M'+N')

If R, = R, ' and R 2 = R 2
' then,

kM(M + N) = k'M'(M' + N') Eq.8

kN(M + N) = k'N'(M' + N')

Dividing equations, we get:

M/N = M'/N' Eq.9

For this to be true we must have

M' = cM and N' = cN Eq.120

where c is a non-zero integer. Since M ' and N ' are relatively prime, then c = 1. Hence:

M = M' and N = N' Eq.ll

which means, for a given R, and R 2 , only one combination of M and N will generate

Rl and R2.

From the form of our solution, M and N are indistinguishable and so we always

choose M < N. M can equal N only if the case when M = N = 1. We extended

our method of solution to an arbitrary number of parallel resistors.

An example of how to apply our method should make the solution clearer. Suppose

the instructor wants to design a problem such that R„n = 30 ohms. To start with,

we find the prime factorization of 30.
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30 = 2 x 3 x 5

Next, we start choosing values for k, M, and N from the prime factors. We don't

neglect the possibility that k, M, or N could equal 1. Generally we start by choosing

values for k first and then we sort through the remaining factors for values of M
and N. Choices for M and N must meet the criterion that M and N be relatively prime

and M < N, except for M = N = 1. We go through the choosing process systematically

until we exhaust all combinations which meet the criteria. As an illustration of the

method, the combinations for R
£Q

= 30 ohms are presented in Table 1. By following

the procedure outlined above, the instructor can generate solutions for any value of Req .

Table 1. Combinations for R
eq

= 30 Ohms

k M N R, R:

1 1 30 31 930

1 2 15 34 255

1 3 10 39 130

1 5 6 55 66

2 1 15 32 480

2 3 5 48 80

3 1 10 33 330

3 2 5 42 105

5 1 6 35 210

5 2 3 50 75

6 1 5 36 ISO

10 1 3 40 120

15 1 2 45 90

30 1 1 60 60

So far, our formulation has been restricted to positive integers, since ordinary

resistances are never negative. However, with minor adjustments, we can extend our

formulation to include negative integers, then we can look at another important topic

covered in introductory physics courses, namely thin lenses. The thin lens equation is:

1/f = 1/i + l/o Eq.12

Here, the values for the image and object distances may also assume negative values

by sign convention. It is easy to show that as soon as one chooses values for M and

N when the image and object distances, the focal length, and the magnification have

been determined. Namely:

o = kM(M + N)

i = kN(M + N) Eq.13

f = kMN
Magnification = -M/N

The fact that so many problem parameters are determined by choosing M and N points

to the very nice feature of design simplicity offered by our method.
To conclude, our method succeeds in simplifying the task of designing introduc-

tory physics problems. Using the formula forms:
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X = kM(M + N)

Y = kN(M + N) Eq.14

Z = kMN

where k, M, and N are non-zero integers and M and N are relatively prime, we can

generate values of X, Y, and Z such that they will be non-zero integers. With this

solution, the physics educator can design problems involving parallel resistors, series

capacitors and thin lenses for introductory courses. To the math educator, our solu-

tion presents a fresh problem in diophantine equations which illustrates basic techni-

ques of number theory analysis.


