# Use of a Microcomputer to Enhance the Coin Flip Probability Exercise in the General Biology Laboratory 

K. Michael Foos<br>Department of Biology<br>Indiana University East<br>Richmond, Indiana 47374

Simple, but effective, software should be available for microcomputer use in the classroom. I have heard over and over that there is not adequate software support for biology, and I have come to believe that this is, in fact, the situation. I believe that one way to combat this lack of available software is to produce software ourselves. Having viewed several biology software packages, I am certain that if we, as teachers, write our own software it will be as good as that on the market. And, there is a distinct advantage to writing one's own software. When you write your own software you can tailor it to your unique situation. Further, by developing a simple software package one is often stimulated to think of another, more complex use for the microcomputer in the classroom.

It is an attempt to encourage biology teachers to develop their own microcomputer software that is the primary purpose for this paper. The program described in this paper is not particularly sophisticated, or complex. It is not difficult, or fancy. It was designed to perform a particular task in my biology classroom, and it does that one simple task rather well. I share it with you for your use, and perhaps more importantly, to stimulate you to develop a better program, one that can do the same task better or one that can expand the focus of this program.

It is common to introduce the topic of genetics with a discussion of probability (1-3). Without a basic understanding of probability it is difficult or impossible to fully discuss the concepts of Mendelian genetics. In the laboratory, probability can be demonstrated easily using coins. However, there is a major limitation to flipping coins. Students can be asked to do a limited number of coin flips before they become weary and their flipping fingers get sore. But, it can be valuable for students to do fifty or one hundred flips, as many laboratory exercises recommend.

After flipping their coins, students can be asked to calculate their ratios of results. But, with such a small sample the likelihood of obtaining highly accurate results is small. And, obtaining results far from the theoretical expected results can cause more questions than it answers. One partial solution to this problem is to add all of the individual sets of data to produce a larger class sample. This almost always gives a sample result that more closely approximates the theoretical than the individual obtains (except in those rare cases where an individual happens to hit the theoretical result).

The concept of increased accuracy with increased sample size is all too often ignored. Using small numbers that can be obtained by manipulating coins provide a very small sample size and thus not very accurate results. Further, the time required to gather data from coin flips would be very substantial if there were a large enough number of flips to be statistically significant.

The computer program that I am about to describe is a simple one devised to show both the coin flip probability and the increased accuracy obtained when using an increased sample size. This program was originally written in Applesoft BASIC and will run on any Apple II or Apple IIe. There are no sophisticated programming techniques that restrict the use of this program to the Apple. It could be run on almost any computer with very slight modification. The program described here was not designed to stretch the limits of the computer. It was designed to provide data for students
to analyze. And, the program is simple enough that almost anyone with any computer experience can design such a program.

A listing of the program is included in Table 1.

Table 1. Listing of the Probability Coin Flip Program for One Coin.

| 100 | REM **COIN FLIP PROGRAM** |
| :---: | :---: |
| 110 | REM **M. FOOS, 11/12/81** |
| 120 | REM **TO DO SIMPLE PROBABILITY** |
| 130 | HOME: PRINT |
| 140 | PRINT "CLASSICALLY STUDENTS HAVE STUDIED" |
| 150 | PRINT "PROBABILITY BY FLIPPING COINS." |
| 160 | PRINT: PRINT "AS OUR ECONOMY IS CHANGING TO BECOME" |
| 170 | PRINT '"MORE AUTOMATED, IT WOULD SEEM THAT"' |
| 180 | PRINT "FLIPPING COINS WOULD ALSO BECOME" |
| 190 | PRINT "AUTOMATED." |
| 200 | PRINT: PRINT "THIS PROGRAM IS DESIGNED TO FLIP COINS" |
| 210 | PRINT "ELECTRONICALLY AND TO PRESENT THE" |
| 220 | PRINT "RESULTS OF THE FLIPS ON THIS SCREEN." |
| 230 | PRINT: PRINT "BECAUSE THE COMPUTER FLIPS THE COINS SO" |
| 240 | PRINT "RAPIDLY IT IS DIFFICULT TO SEE, IT WILL" |
| 250 | PRINT "ALSO COUNT THE NUMBER OF FLIPS IT DOES." |
| 260 | PRINT: PRINT "TO USE THIS PROGRAM ALL YOU HAVE TO DO" |
| 270 | PRINT "IS SELECT THE TOTAL NUMBER OF FLIPS YOU" |
| 280 | PRINT "WANT THE COMPUTER TO DO." |
| 300 | GOSUB 1000 |
| 600 | HOME: $\mathrm{N}=0: \mathrm{H}=0: \mathrm{T}=0:$ PRINT: PRINT |
| 606 | PRINT "HOW MANY COIN FLIPS DO YOU WANT THE" |
| 610 | PRINT "COMPUTER TO DO? ENTER YOUR NUMBER AND" |
| 612 | INPUT "PRESS RETURN.";N |
| 620 | HOME: PRINT: PRINT |
| 630 | $\mathrm{X}=\mathrm{INT}(\mathrm{RND}(1) * 2)$ |
| 640 | IF $\mathrm{X}=1$ THEN PRINT ' H ' $;$ : $\mathrm{H}=\mathrm{H}+1$ |
| 650 | IF $\mathrm{X}=0$ THEN PRINT " T ' $;: \mathrm{T}=\mathrm{T}+1$ |
| 660 | IF H + T $=$ N THEN GOTO 680 |
| 670 | GOTO 630 |
| 680 | PRINT: PRINT CHR\$(7): PRINT " HEADS = "H" TAILS = "T |
| 690 | $\mathrm{TH}=\mathrm{TH}+\mathrm{H}: \mathrm{TT}=\mathrm{TT}+\mathrm{T}$ |
| 700 | GET X\$ |
| 710 | IF X\$ = "X' THEN 730 |
| 720 | GOTO 800 |
| 730 | HOME:PRINT:PRINT:PRINT |
| 740 | PRINT "THE TOTAL NUMBER OF COIN FLIPS DONE IN" |
| 750 | PRINT "THIS LAB WAS ";TT + TH |
| 760 | PRINT:PRINT:PRINT "THE RESULTING DISTRIBUTION IS " |
| 770 | PRINT "LISTED BELOW:" |
| 780 | PRINT:PRINT " HEADS = "TH" ${ }^{\text {P }}$ TAILS $=$ "TT |
| 790 | END |
| 800 | HOME |
| 810 | FLASH |
| 820 | PRINT "ННННННННННННННННННННННННННННННННННННННН" |
| 821 | PRINT "ННННННННННННННННННННННННННННННННННННННН" |
| 822 |  |
| 823 | PRINT "ННННННННННННННННННННННННННННННННННННННН" |
| 824 | PRINT "HHHHHTTTTTTTTHTHНННННННTTTHHTTTTTTTHHHH" |
| 825 |  |
| 826 | PRINT "HННННTННННННННТНННННННННТНННТННННННТННН" |
| 827 | PRINT "HННННТННННННННТНННННННННТННННННННННТННН" |
| 828 | PRINT "HННННТННННННННТНННННННННТННННННННННТННН" |
| 829 | PRINT "НННННТННННННННТНННННННННТННННННННННТННН" |
| 830 | PRINT "HННННTННННННННTНННННННННТННННННННННТННН" |
| 831 | PRINT "HHHHHTHHHHHHHHTHHHHHННННTHНННННННННТННН" |

Table 1.-Continued

1001 NORMAL
1002 GET A\$
1003 IF A $\$=\mathrm{CHR} \$(13)$ THEN RETURN
1004 PRINT CHR\$(7): GOTO 1000
GOSUB 1000
GOTO 130

PRINT "HHHHHTTTTTHHHHTHHHHHHHHHTHHHTTTTTTTHHHH"
PRINT "НННННТННННННННТНННННННННТНННТНННННННННН"

PRINT "НННННТННННННННТНННННННННТ'НННТНННННННННН"
PRINT "HННННТННННННННТНННННННННТНННТНННННННННН"
PRINT "НННННТННННННННТНННННННННТНННТНННННННННН"

PRINT "HНННTTTHHНННННTTTTTTTTHTTTHTTTHНННННННН"
PRINT "ННННННННННННННННННННННННННННННННННННННН"
PRINT "ННННННННННННННННННННННННННННННННННННННН"
PRINT "ННННННННННННННННННННННННННННННННННННННН"
PRINT "ННННННННННННННННННННННННННННННННННННННН"

PRINT:INVERSE:PRINT"، <PRESS RETURN >

The program can be broken into three parts. The first part consisting of lines $100-300$ is an introduction to the program. This kind of an introduction is especially important for students who have little or no working knowledge of the computer. It is designed to put them at ease and give them a starting point for using the computer. It helps them feel that they know what to do.

The second part of the program included in lines 600-790 actually makes the program work. In looking at this section it is obvious that several different things happen. In line 600 the screen of the computer's monitor is cleared and all of the counters are set to zero. The student is then asked to enter a number of coin flips to be done by the computer. Line 630 is the heart of this program. By using the computer's random number generator, a number is selected. This instruction designates that the random number selected be any integer less than two. Thus, the computer's random number must be either a 0 or a 1 .

Lines 640 and 650 instruct the computer to print the letter ' H ' if the computer selects a 1 and to print a letter ' T ' if the computer selects a 0 . These lines also add the number of times a ' H ' and a ' T ' have been printed.

Lines 660 and 670 instruct the program to continue printing ' H ' and ' T ' until the total number of letters printed equals the number requested by the student in the beginning. When the correct total numbers of letters has been printed, the computer prints the totals at the bottom of the screen as directed by line 680 . Line 690 keeps a running total of all of the counts in the session.

The 'GET' command used in line 700 accepts a single character from the keyboard without using the $<$ RETURN $>$. If a capital ' X ' is pressed at this time, the computer will print the aggregate total of all of the runs in the session as dictated in lines 730-780, and will end the execution of the program (line 790).

The instructor will normally press this key after all of the students have received their data. It is possible that a random stroke could cause this to happen out of turn, but there is only a small probability.

Striking any key but the capital ' X ' will cause the screen to show a flashing display. This third part of the program is listed in lines 800-843. This display is nothing more than a device to show that the computer is turned on and working. It lets the student
know that no one is currently using the computer, and it is free for their use. It flashes on the Apple and could be enhanced to be colorful. It does not use either of the graphics modes of the Apple and is therefore directly adaptable to another brand of computer. However, the 'FLASH' command is a uniquely Apple command.

The last few lines $1000-1004$ help to 'goof-proof' the program. These lines prohibit the input of any character other than the <RETURN> key when that response is requested. The buzzer also sounds if any character other than the <RETURN> is pressed.

By altering the lines 600-790 it is easy to modify this program to simulate flipping two or three coins simultaneously. These modifications, listed in Table 2 and Table 3 expand the usefulness of the program from the simple probability relationships one finds with a single variable to the consideration of two or three variables. This leads to the logical discussion of dihybrid and trihybrid crosses as well as the typical monohybrid cross. This simple modification expands the one program into three phograms and thus increases its effectiveness.

Table 2. Modification for the Coin Flip Program for Two Coins.

```
600 HOME:N =0:HH=0:HT = 0:TH = 0:TT = 0:PRINT:PRINT
    PRINT "HOW MANY COIN FLIPS DO YOU WANT THE"
PRINT "COMPUTER TO DO? ENTER YOUR NUMBER AND"
INPUT ''PRESS RETURN.";N
X = INT(RND(1)*4)
IF X = 0 THEN PRINT ''HH '`;:HH=HH+1
IF X=I THEN PRINT ''HT '`;:HT = HT + 1
IF X = 2 THEN PRINT "TH ",;:TH = TH + 1
IF X = 3 THEN PRINT ''TT "';:TT = TT +1
IF HH + HT + TH + TT = N THEN }68
GOTO }63
PRINT:PRINT CHR$(7): PRINT "'HH = ''HH
PRINT "HT = "'HT
PRINT "'TH = "TH
PRINT "TT = "TT
A}=\textrm{A}+\textrm{HH}:\textrm{B}=\textrm{B}+\textrm{HT}:\textrm{C}=\textrm{C}+\textrm{TH}:\textrm{D}=\textrm{D}+\textrm{TT
GET X$
IF X$ = "X" THEN 730
GOTO }80
HOME:PRINT:PRINT:PRINT
PRINT "THE TOTAL NUMBER OF COIN FLIPS DONE IN"
PRINT "THIS LAB WAS ";A + B + C + D
PRINT:PRINT:PRINT "THE RESULTING DISTRIBUTION IS"
PRINT "LISTED BELOW:"
PRINT
PRINT "HEADS - HEADS = ''A
PRINT "HEADS - TAILS = ''B
PRINT "TAlLS * HEADS = ''C
PRINT "TAlLS * TAILS = "'D
END
```

Table 3. Modification for the Coin Flip Program for Three Coins.

```
600 HOME:N =0:A =0:B=0:C=0:D=0:E=0:F=0:G=0:H=0
602 PRINT:PRINT
606 PRINT "HOW MANY COIN FLIPS DO YOU WANT THE"
6I0 PRINT "COMPUTER TO DO? ENTER YOUR NUMBER AND"
6I2 INPUT "PRESS RETURN.";N
620 HOME:PRINT:PRINT
630 X = 1NT(RND(I)*8)
```

Table 3.-Continued

```
6 3 5
6 3 7
6 3 9
640
643
645
6 4 7
650
6 6 0
6 7 0
680
6 8 1
6 8 2
6 8 3
684
6 8 5
6 8 6
6 8 7
68
6 9 0
69I
6 9 2
6 9 3
6 9 4
6 9 5
6 9 6
6 9 7
7 0 0
```

IF X=0 THEN PRINT ''HHH "';:A = A + I

```
IF X=0 THEN PRINT ''HHH "';:A = A + I
IF X = I THEN PRINT "HHT '';:B=B + I
IF X = I THEN PRINT "HHT '';:B=B + I
IF X = 2 THEN PRINT "HTH "';:C=C + I
IF X = 2 THEN PRINT "HTH "';:C=C + I
IF X = 3 THEN PRINT "HTT '';:D=D + I
IF X = 3 THEN PRINT "HTT '';:D=D + I
IF X = 4 THEN PRINT "THH '`;:E=E + I
IF X = 4 THEN PRINT "THH '`;:E=E + I
IF X = 5 THEN PRINT "THT '';:F=F + I
IF X = 5 THEN PRINT "THT '';:F=F + I
IF X = 6 THEN PRINT ''TTH '';:G=G + I
IF X = 6 THEN PRINT ''TTH '';:G=G + I
IF X = 7 THEN PRINT "TTT ";:H=H+1
IF X = 7 THEN PRINT "TTT ";:H=H+1
IF A}+\textrm{B}+\textrm{C}+\textrm{D}+\textrm{E}+\textrm{F}+\textrm{G}+\textrm{H}=\textrm{N}\mathrm{ THEN GOTO 680
IF A}+\textrm{B}+\textrm{C}+\textrm{D}+\textrm{E}+\textrm{F}+\textrm{G}+\textrm{H}=\textrm{N}\mathrm{ THEN GOTO 680
GOTO 630
GOTO 630
PRINT:PRINT CHR$(7)
PRINT:PRINT CHR$(7)
PRINT "'HHH= "'A
PRINT "'HHH= "'A
PRINT "HHT = "'B
PRINT "HHT = "'B
PRINT 'HTH = "'C
PRINT 'HTH = "'C
PRINT "HTT = "'D
PRINT "HTT = "'D
PRINT "THH = ''E
PRINT "THH = ''E
PRINT "THT = ''F
PRINT "THT = ''F
PRINT '"TTH = ''G
PRINT '"TTH = ''G
PRINT "TTT = "'H
PRINT "TTT = "'H
TA = TA + A
TA = TA + A
TB}=TB+
TB}=TB+
TC=TC+C
TC=TC+C
TD =TD + D
TD =TD + D
TE=TE+E
TE=TE+E
TF=TF}+\textrm{F
TF=TF}+\textrm{F
TG}=\textrm{TG}+\textrm{G
TG}=\textrm{TG}+\textrm{G
TH}=\textrm{TH}+\textrm{H
TH}=\textrm{TH}+\textrm{H
GET X$
GET X$
IF XS = "X'' THEN 730
IF XS = "X'' THEN 730
GOTO }80
GOTO }80
HOME:PRINT:PRINT:PRINT
HOME:PRINT:PRINT:PRINT
PRINT "THE TOTAL NUMBER OF COIN FLIPS DONE IN"
PRINT "THE TOTAL NUMBER OF COIN FLIPS DONE IN"
PRINT "THIS LAB WAS ";TA + TB + TC + TD + TE + TF + TG + TH
PRINT "THIS LAB WAS ";TA + TB + TC + TD + TE + TF + TG + TH
PRINT:PRINT:PRINT "THE RESULTING DISTRIBUTION IS"
PRINT:PRINT:PRINT "THE RESULTING DISTRIBUTION IS"
PRINT "'LISTED BELOW:"
PRINT "'LISTED BELOW:"
PRINT
PRINT
PRINT "HEADS • HEADS • HEADS = "'TA
PRINT "HEADS • HEADS • HEADS = "'TA
PRINT "HEADS • HEADS • TAILS = "TB
PRINT "HEADS • HEADS • TAILS = "TB
PRINT "HEADS • TAILS • HEADS = "TC
PRINT "HEADS • TAILS • HEADS = "TC
PRINT "HEADS • TAILS • TAILS = "TD
PRINT "HEADS • TAILS • TAILS = "TD
PRINT "TAILS • HEADS • HEADS = ''TE
PRINT "TAILS • HEADS • HEADS = ''TE
PRINT "TAILS • HEADS • TAILS = "'TF
PRINT "TAILS • HEADS • TAILS = "'TF
PRINT "TAILS • TAILS • HEADS = "'TG
PRINT "TAILS • TAILS • HEADS = "'TG
PRINT "TAILS • TAILS • TAILS = ''TH
PRINT "TAILS • TAILS • TAILS = ''TH
END
```

END

```

The simple computer program described here works well in a classroom with a discussion of probability and was designed primarily to be used in a first semester college biology course. It works well to provide a large number of coin flips very rapidly. This program will generate 100 coin flips in about three seconds; five thousand coin flips can be generated in two minutes and ten seconds. Larger samples can be generated by the computer if needed. Students may also compare their own actual coin flips to the computer. When students do smaller numbers of coin flips and compare their data with a larger number that the computer has generated, they almost always become aware of the greater accuracy of the larger sample.

This program makes it possible for an instructor to dwell on the increased accuracy of large sample sizes to provide accurate data approaching the theoretical results one
would anticipate. Without such a laboratory example students often do not fully realize this relationship between the increased accuracy and the increased sample size. It is possible with this program to compare relatively large sample sizes for accuracy. Individuals could compare 1000 coin flips with 10,000 coin flips to determine the amount of increased accuracy with that amount of increase in sample size.

Also, it is often interesting for students to see the total results in the laboratory. Just the difference between one individual's sample size and the sample size of the entire class is often enough to be striking.

This is just one simple example of the use of a microcomputer to enhance a laboratory exercise commonly used in biology. There are without a doubt many other instances in which computer enhancement would lead to a better understanding of biological principles. I would like to challenge you to develop computer software that works for you, and then tell the rest of us.

\section*{Literature Cited}
1. Baker, Jeffrey, J.W. and Garland E. Allen. 1982. The study of biology. Fourth edition. Addison-Wesley Publishing Co. Reading, MA. 971 p.
2. Curtis, Helena and N. Sue Barnes. 1981. Invitation to biology. Worth Publishers. New York. 696 p.
3. Purves, William K. and Gordon H. Orians. 1983. Life: the science of biology. Sinauer Associates. Boston. 1182 p.```

