Transformations of Hydroxylamine in Soils

D. W. NELSON Agronomy Department, Purdue University

Introduction

Although hydroxylamine (NH_2OH) is considered to be an intermediate in biological nitrogen fixation (Equation 1), nitrification (Equation 2), and nitrate reduction (Equation 3) in various ecological systems (Alexander, 1961), few investigations have been concerned with NH_2OH transformations in soils.

$N_2 \rightarrow (NHOH)_2 \rightarrow 2NH_2OH \rightarrow 2NH_3 \rightarrow glutamic acid$	(1)
$NH_4^+ \rightarrow NH_2OH \rightarrow (HNO) \rightarrow NO \rightarrow NO_2^- \rightarrow NO_3^-$	(2)
$NO_{3} \rightarrow NO_{2} \rightarrow ? \rightarrow NH_{2}OH \rightarrow NH_{4}^{+}$	(3)

Duisberg and Buehrer (1954) found that NH_2OH was not converted to nitrite and nitrate when added to soils. Bremner and Shaw (1958) could not detect the presence of NH_2OH during studies of denitrification in soils; furthermore, they reported that NH_2OH could not be recovered soon after addition to soils. They speculated that higher oxides of manganese and iron reacted with NH_2OH to produce gaseous N compounds. Relatedly, Arnold (1954) observed that N_2O was produced when NH_2OH was added to wet soil which he attributed to reactions with nitrite. Nommik (1956) reported that N_2 and N_2O were evolved when NH_2OH was added to soil maintained in an argon atmosphere.

The lack of quantitative information on NH_2OH transformations in soils coupled with the potential importance of these transformations in the loss of inorganic N from soils has prompted the work reported here. The objective of the work was to determine the fate of NH_2OH in soils and to characterize the products of NH_2OH reactions in representative soils.

Materials and Methods

The soils used (Table 1) were surface (0-15 cm) samples representing a wide range in physical and chemical properties. Samples were air-dried (20 to 22° C for 48 hours) and ground to pass an 80-mesh sieve. Organic C was determined by the method of Mebius (1960), total N by a semimicro Kjeldahl procedure (Bremner, 1965a), pH by glass electrode (soil:water ratio 1:2.5), clay by pipette analysis (Kilmer and Alexander, 1949) after dispersion by Na-saturated Amberlite IRC-50 resin (Edwards and Bremner, 1965) and cation exchange capacity by the procedure of Edwards (1967).

In Experiment 1, 3 g samples of steam-sterilized soil were treated with 600 μ g of N¹⁵H₂OH-N in 1 ml of solution. Treated samples were immediately extracted with 2 *M* KCl or incubated for 4 days (25° C, 100% relative humidity) before extraction. The amount of NH₂OH-N fixed and amounts converted to NH₄, NO₂, and NO₃ were determined. In Experiment 2, 10 ml of pH 5 acetate buffer (2 *M* containing 10 g of soil, 0.5 g MnO₂, O.5 *M* FeCl₃, or 0.057 *M* NaNO₂ were treated with 6 ml of a N¹⁵H₂OH · HCl solution containing 8 mg of NH₂OH-

Soil		_					
No.	Туре*	pH	Organic C	Total N	Clay	Cation- exchange capacity	
			~	~	~		
			%	%	%	me/100 g	
1	Pershing sil	5.1	1.79	0.164	19	7.0	
2	Clyde sil	5.5	4.30	0.402	25	29.9	
3	Sac sicl	6.8	2.48	0.237	34	28.4	
4	Thurman sa	6.8	0.64	0.056	1	4.4	
5	Glencoe sic	6.8	8.92	0.860	41	48.8	

TABLE 1. Characteristics of soils used in the investigation.

*sil, silt loam; silty clay loam; sa, sand; silty clay.

N. Treatments were performed in a sealed gas analysis unit (helium-oxygen atmosphere) described by Nelson and Bremner, 1970) containing KMnO₄ solution in the center well. After 48 hours of incubation at 25° C, the amount of added NH₂OH-N fixed and the amounts converted to NH⁴₄, NO₂, NO₃, NO + NO₂, N₂, and N₂O were determined.

The amounts of NH_4^+ , NO_2^- , and NO_3^- in 2 M KCl extracts of soils or in acetate buffer were estimated by the extraction-distillation procedure of Bremner and Keeney (1966). Hydroxylamine was estimated by a steam distillation procedure which involved recovery of inorganic N in soil extracts or acetate buffer before and after treatment with FeCl₃ solution. High FeCl₃ concentrations oxidized NH2OH to gaseous forms of N. Details of the method will be published elsewhere. The amount of N fixed (i.e. rendered nonextractable) on addition of N¹⁵ enriched NH₂OH to soil was determined by total N analysis and isotope-ratio analysis of the total N digest after removal of inorganic forms of N by extraction with 2 M KCl. Nitrogen isotope-ratio analyses were performed as described by Bremner (1965b) using a Consolidated Electrodynamics Corporation Model 21-620 mass spectrometer fitted with an isotope-ratio accessory. Amounts of NH₂OH converted to N₂ and N₂O were estimated by gas chromatographic analysis of a 1 ml sample of the atmosphere within gas analysis units as described by Nelson and Bremner (1970). Amounts of NO plus NO₂ formed during NH₂OH reactions were determined by absorbing these gases in a 0.1 M K MnO4: 1 M K OH solution and subsequent analysis of this solution for inorganic N as described by Nelson and Bremner (1970).

Results and Discussion

Data in Table 2 establish that added NH₂OH rapidly reacts with soil constituents. The total recovery of added NH₂OH-N immediately after addition averaged 55% in the five soils investigated. Only small amounts of added NH₂OH-N were converted to NH₄⁺, NO₂, or NO₃, whereas an average of 25% was "fixed" by soil constituents in a form which could not be extracted by KCl solutions. The fixation process was very rapid and the amount of NH₂OH-N fixed was directly related to the organic C content of the soil. This suggests that the site of fixation of NH₂OH in soils is organic matter. Recovery data suggests

Soil no.				Recovery of NH2OH-N (%)			
	Treatment time (days)	As NH2OH	As NH₄	$\operatorname{NO}_{2}^{-}$ + $\operatorname{NO}_{3}^{-}$	As fixed N	Total	
1	0	4	0	0	9	13	
-	4	1	0	0	10	11	
2	0	43	1	5	30	79	
-	4	5	2	8	34	49	
3	0	19	0	0	19	38	
	4	4	0	4	21	29	
4	0	67	0	3	10	80	
	4	2	3	21	22	48	
5	0	5	0	0	55	60	
	4	2	0	0	56	58	
Ave.	0	28	0	2	25	55	
	4	3	1	7	29	40	

 TABLE 2. Recovery of hydroxylamine N after treatment of soils with hydroxylamine solution for 0 and 4

 days.

that an average of 45% of the added N¹⁵ could not be accounted for and was presumably lost from the system in gaseous form.

Recovery of NH₂OH-N four days after addition to soils showed that only small amounts of added N were present as NH₂OH (Table 2). Limited amounts of added NH₂OH-N were converted to NH⁴₄, NO²₂, or NO³ (significant amounts of NO³ were formed in two soils). The amounts of added NH₂OH-N fixed increased slightly after four days of incubation as compared to values for immediate fixation. Only an average of 40% of added N was recovered in soils following four days of incubation, suggesting that 60% was lost from soil in gaseous form.

In an attempt to determine which components of soil were responsible for gaseous loss of added NH₂OH-N and what types of gaseous N compounds are released upon addition of NH₂OH to soils, a model system was used which allowed measurement of all NH₂OH reaction products. Addition of NH₂OH to acetate buffer containing two soils demonstrated that a portion of the added N is fixed, and substantial amounts of N are evolved as N2 and N2O (Table 3). The proportion of added N evolved from soils as N_2 is about equal to that evolved as N_2O . This finding is somewhat surprising because most investigators have believed that N_2O is the major gaseous product of NH_2OH reactions in soils. In an attempt to determine which soil constituents may be responsible for conversion of NH₂OH to N₂ and N₂O, inorganic substances present in soils were reacted with NH₂OH under controlled conditions. Nitrite and MnO₂ oxidized NH₂OH to N₂O with little formation of N₂ (Table 3). Reaction of FeCl₃ with NH₂OH resulted in significant production of N₂ along with large amounts of N_2O . These findings suggest that inorganic materials may be responsible for decomposition of NH₂OH in soils with subsequent release of gaesous forms of N.

Material in buffer		Recovery of added NH2OH-N						
	·As NH ₂ OH	As NH₄	$\frac{\text{As}}{\text{NO}_2^2 + \text{NO}_3}$	As NO + NO	As N ₂	As N ₂ O	As fixed N	
Soil no. 1 (10g)	2	0	0	1	41	46	10	
Soil no. 2 (10g)	6	2	10	0	21	23	32	
MnO2 (0.5g)	0	1	0	0	2	96	0	
O.5 M FeCla	0	0	0	<1	29	71	0	
0.057 <i>M</i> NaNO2	0	0	5	0	5	90	0	

TABLE 3. Recovery of hydroxylamine N added to pH 5 buffer containing various materials (25° C)*.

*Ten ml. of pH 5 acetate buffer (2M) containing the material specified was treated with 6 ml of hydroxylamine hydrochloride solution containing 8 mg of hydroxylamine N. Treatments were performed in sealed gas analysis units (helium-oxygen atmosphere) with KMnO4 solution in center chamber.

Conclusions

Hydroxylamine reacted rapidly with soil constituents after addition to soils. A small portion of added NH₂OH was converted to other inorganic forms of N in soils (NH⁴, NO $_2$, NO $_3$) whereas substantial amounts were fixed by soil organic matter and evolved as gaseous forms of N. Fixation of NH₂OH likely occurs through the formation of oximes when carbonyl groups in soil organic matter react with NH₂OH (Equation 4):

 $R-C=0 + NH_2OH \rightarrow R-C=NOH + H_2O$ (4) Schnitzer and Skinner (1965) and Porter (1969) have observed oxime formation upon treating humic acid materials with NH₂OH. Gaseous N compounds are likely formed through the reaction of NH₂OH with common inorganic constituents in soils such as ferric iron and manganese dioxide (Equations 5, 6 and 7):

2	$MnO_2 +$	$2NH_2OH \rightarrow 2$	2 MnO +	$N_2O + 3$	BH ₂ O	(5))

 $4Fe^{+3} + 2NH_2OH \to 4 Fe^{+2} + N_2O + 4H^+$ (6)

 $2Fe^{+3} + 2NH_2OH \rightarrow 2Fe^{+2} + N_2 + 2H_2O + 2H^+$ (7)

Mann and Quastel (1946) observed that NH_2OH reacted rapidly with MnO_2 in soils. Porter (1969) reported that NH_2OH reacts with NO_2 to liberate large amounts of N_2O , however, NO_2 is seldom detected in soils.

The finding that NH₂OH is rapidly decomposed and fixed when added to soils explains why this compound has never been detected in soil systems. Furthermore, it seems likely that NH₂OH is not released into the soil environment during N transformation carried out by microorganisms because if this were the case large unexplained losses of N would occur. A more likely situation is that NH₂OH is an intermediate in the transformations of inorganic N in cells of soil organisms, however, NH₂OH is probably bound to the enzymes involved in oxidation-reduction of N compounds. Little NH₂OH is released from the cell before more stable N compounds are formed enzymatically. The more stable N forms such as NH⁴₄ or NO ₃ are then released from the cells and are available for use by plants or microorganisms.

Literature Cited

- 1. ARNOLD, P. W. 1954. Losses of nitrous oxide from soils. J. Soil Sci. 5:116126.
- ALEXANDER, M. 1961. Introduction to Soil Microbiology. John Wiley and Sons, Inc. New York, N. Y. p. 472.
- 3. BREMNER, J. M. 1965a. Total nitrogen. Agronomy 9:1149-1178.
- 4. BREMNER, J. M. 1965b. Isotope-ratio analysis of nitrogen in nitrogen—15 tracer investigations. Agronomy 9:1256-1286.
- BREMNER, J. M. and D. R. KEENEY 1966. Determination of different forms of nitrogen in soils. 3.
 Exchangeable ammonium, nitrate, and nitrite by extraction-distillation methods. Soil Sci. Soc. Amer. Proc. 30:577-582.
- 6. BREMNER, J. M. and K. SHAW. 1958. Denitrification in soil. J. Agric. Sci 51:22-39.
- 7. DUISBERG, P. C. and T. F. BUEHRER. 1954. Effect of ammonia and its oxidation products on rate of nitrification and plant growth. Soil Sci. 78:37-49.
- EDWARDS, A. P. 1967. A semimicro technique for the determination of cation exchange capacity. Can. J. Soil Sci. 47:140-142.
- 9. EDWARDS, A. P. and J. M. BREMNER 1965. Dispersion of mineral colloids in soils using cation exchange resins. Nature 205:208-209.
- KILMER, V. J. and L. T. Alexander 1949. Methods of making mechanical analysis of soils. Soil Science 68:15-24.
- 11. MANN, P. J. G. and J. H. Quastel 1946. Manganese metabolism in soils. Nature 158:154-156.
- 12. MEBIUS, L. J. 1960. A rapid method for determination of organic carbon in soils. Anal. Chim. Acta 22:120-124.
- NELSON, D. W. and J. M. BREMNER 1970. Gaseous products of nitrite decomposition in soils. Soil Biol. Biochem. 2:203-215.
- 14. NÖMMIK, H. 1956. Investigations on denitrification in soil. Acta Agr. Scandinavica 6:195-228.
- PORTER, L. K. 1969. Gaseous products provided by anaerobic reaction of sodium nitrite with oxime compounds and oximes synthesized from organic matter. Soil Sci. Soc. Amer. Proc. 33:696-702.
- SCHNITZER, M. and S.I.M. SKINNER 1965. The carbonyl group in a soil organic matter preparation. Soil Sci. Soc. Amer. Proc. 29:400-405.