LOGO AND
EXTENDED
DEFINITION

BRENDAN J. DESILETS

I was not looking forward to teaching extended definition, though
I was not much bothered by the widely-circulated research find-
ings that seemed, at least at the time of their publication, to debunk
such “rhetorical” approaches to teaching writing. In fact, my ex-
perience with this approach had led me to believe that extended
definition was as useful as any skill I could help my rather
academically-inclined high school students develop, and also that
the teaching of this method of development lent itself quite readily
to the justly-popular process approach to writing instruction. The
problem was not a lack of materials either. Over a period of years
I had collected a variety of helpful exercises in development by
definition, ranging from a well-structured and fairly easy lesson
built around a definition of a teaspoon (Blickhahn) to the usual
lessons in Warriner’s, to some more advanced, but still high-school
appropriate, work in Brooks and Warren’s Modern Rhetoric. Still,
I knew the dilemma [would face. If I stayed with the exercises
only as long as I could keep the students really interested in them,
about one third of them would have trouble producing essays
developed by definition, largely because of confusion between the
kind of brief definition they knew from their work with dictionaries
and the more exhaustive sort of definition that serves as a method
of development. What 1 needed was a tool that would let me
focus on the process of extended definition, stressing the differences
between extended and brief definition, in a form that was simpler
than the end product I wanted to reach, a good essay, and yet
captivating enough to keep the students’ attention for a period
of a week or so. | found the answer in a surprising place, the
computer language Logo (Harvey; Papert).

Now, I am not much of a programmer, in Logo or any other

JOURNAL OF TEACHING WRITING 43

language. In fact, the Logo procedures listed here are among the
simplest and most commonly used ones. They appear in Harold
Abelson’s Logo for the Apple II (all within the first fifty pages)
and in many other Logo manuals and tutorials. I have used them
mostly with Terrapin Logo for the Apple II series, but they work
almost identically in all versions of Logo. For people who are
familiar with Logo, these procedures will seem quite commonplace,
though their use in teaching extended definition will not. For those
of us who are not accustomed to using Logo or other program-
ming languages, the procedures will be easy enough to provide
a starting point for an exploration of the use of programming to
help students improve their thinking and writing. These exercises,
then, demand little programming skill on the teacher’s part and
none on the students’; what the teacher does need is an
understanding of the skills involved in extended definition and of
the role of each programming task in developing these skills.

The first programming task allows the teacher to introduce
the Logo commands needed for the later tasks and reinforces the
importance of precision in developing an extended definition
(Carter). If many computers are available, as in a computer lab,
each student or group of students should probably work at her
own computer, though the project also works well with just one
computer with a large display monitor, as | used it.

With Logo in its “draw” mode, start by introducing the students
to the “turtle,” a marker, usually triangular in shape, that leaves
a trail as it moves around the screen. Next, show the students
the FORWARD command, abbreviated FD, which tells the turtle
to move forward, leaving a line as its trail. For example, typing
FD 50 (and then pressing the “Return” or “Enter” key) will cause
the turtle to move forward fifty “turtle steps” and will cause a line
of the same length to appear on the screen. The only additional
specialized Logo word or “primitive” the student will need is
RIGHT, abbreviated RT, which causes the turtle to turn to the
right. RT 90, for instance, makes the turtle turn ninety degrees
to the right. As their first LOGO problem, ask the students to
write a series of commands that will draw a square on the screen.
Most will quickly come up with an appropriate sequence, such
as FD 50 RT 90 FD 50 RT 90 FD 50 RT 90 FD 50 RT 90.

Once students have developed this sequence, show them how
these commands can be used to define a procedure which the

44 EXTENDED DEFINITION

computer will remember. Type TO BOX, and note that the Logo
editor screen will appear, with TO BOX at its top. Then define
the procedure called BOX by typing in each of the commands,
pressing Return or Enter after each command. The screen will
now look like this:

TO BOX
FD 50
RT 90
FD 50
RT 90
FD 50
RT 90
FD 50
RT 90
END

Next, leave the Logo editor in such a way as to define the BOX
procedure, (by pressing the Control and C keys simultaneously
on an Apple Il computer). Now, typing BOX and pressing Return
or Enter will cause the turtle to draw a box on the screen.

At this point, we are ready to challenge the students a bit
by presenting them with a task that requires rather careful and
precise thinking. This seemingly simple task is to define a pro-
cedure that will draw an equilateral triangle. Have the students
write such a procedure on paper and then try out their solutions
on the screen for all to see. A correct procedure, which will prob-
ably take students a few tries to discover, is:

TO TRIANGLE

FD 50

RT 120
FD 50

RT 120
FD 50

RT 120
END

Now the students have spent a day or two defining pro-
cedures, noting that good definition does require considerable preci-
sion and, therefore, in most cases, some rewriting, and are ready
to look at a problem that involves a somewhat startling insight.

JOURNAL OF TEACHING WRITING 45

Their task is to write a procedure that will get the turtle to make
the drawing indicated in Figure 1, in such a way that the turtle
will continue to retrace the lines for an indefinite period of time.
This task is a difficult one for naive Logo programmers, so dif-
ficult that some students may complain that they do not know
enough Logo primitives (special words) to do the job. Students
who have some experience programming in BASIC may be
especially adamant with this complaint, but, in truth, the students
do have all the primitives and all the knowledge of Logo syntax
that they need. Give them time and as many hints as they re-
quire, but try to let the students discover a correct solution such
as this one:

Figure 1. The Manybox Drawing. The turtle will continue to retrace the lines
of this drawing until the user interrupts the execution of the procedure, as by
pressing “Control” and “G” simultaneously on an Apple Il computer. For the
drawing to work as presented in this article, the computer must have two pro-
cedures in its memory, the BOX procedure and the MANYBOX procedure.

46 EXTENDED DEFINITION

TO MANYBOX
BOX
RT 30
MANYBOX
END

At first, this MANYBOX procedure may seem a rather strange
bit of thinking. As Harold Abelson puts it, the use of the
MANYBOX as part of the definition of MANYBOX seems to be
a kind of joke, but it must be logically sufficient to define the draw-
ing since it does work (32-33). In truth, this use of procedure
as part of its own definition is an extremely powerful program-
ming idea known as recursion, which can help students understand
the distinction between brief definition and extended definition.

Ask students to look closely at the MANYBOX definition and
to recall rules about definition they have learned in the past. With
a bit of prodding, many students will recall hearing that we should
not use a word, or even a form of the word, in its own definition,
a rule that the MANYBOX definition flagrantly violates. Is the old
rule wrong? Not at all, if we remember the context in which we
heard it, a context that involved presenting a brief definition of
a new vocabulary word, a word of which we presumably had no
previous knowledge. In the case of MANYBOX, though, when
the computer reaches the MANYBOX step in the procedure, the
machine has some previous “knowledge” of the meaning of
MANYBOX; that is, it knows that part of the meaning of the word
consists of BOX and RT 30. Using this previous information, the
machine is able to use the definition to draw the MANYBOX figure.
Most students will quickly see, as they look at the topics usually
used in writing extended definitions, that these topics focus on
concepts such as freedom or wealth or happiness, with which peo-
ple already have some familiarity. Thus, in writing extended defini-
tion, we may, and usually should, use recursion; that is, we should
repeatedly use the word we are defining as we refine its definition.

For some classes, this much work with Logo may be as much
as the students can profitably use; with classes of junior high school
students | have usually chosen to stop at this point. But, with
‘cademically above average high school students, 1 have found
it helpful to move ahead to one more Logo problem, a problem
that mimics the process of writing an essay of definition a little
more closely.

JOURNAL OF TEACHING WRITING 47

When we used recursion in MANYBOX, we it used in a way
that repeated an identical procedure an indefinite number of times.
In extended definition, on the other hand, with each repetition
of the word being defined, we hope to add something new to
the definition. To mimic this more complex kind of recursion in
a Logo problem, we need to introduce the idea of variables in
Logo procedures.

Suppose that we want to write a procedure that will draw
squares of varying size, rather than just producing a square of
a single size, as our BOX procedure does. Logo syntax allows
us to use variables as in the following example, in which we are
calling our variable “SIZE”:

TO SQUARE :SIZE

FD :SIZE

RT 90

FD :SIZE

RT 90

FD :SIZE

RT 90

FD :SIZE

RT 90

END

Now, if we type SQUARE 20, the turtle will draw a square
with each side twenty turtle steps long, whereas SQUARE 40 will
result in a square with forty-step sides. Armed with this notion
of variables, students can try to write a program that will produce
the picture shown in Figure 2, and which will continually produce
larger and larger squares until we interrupt the program. Once
again, we are confronting students with a fairly difficult problem
that will require considerable time and effort, and probably a few
hints. A correct definition would be:

TO GROWSQUARES :SIZE
SQUARE :SIZE
RT 20

GROWSQUARES :SIZE + 5
END

48 EXTENDED DEFINITION

Figure 2. The Growsquares Drawing. The turtle will continue to draw larger
and larger squares until the user interrupts the execution of the procedure. For
the drawing to work as presented in this article, the computer must have two
procedures, SQUARE :SIZE and GROWSQAURES :SIZE, in its memory.

At this point, | have, so far, chosen to stop examining the
nature of extended definition through Logo and moved on to more
conventional exercises, recognizing that my students have already
done some hard thinking about this method of development and
its recursive nature. In general, after this Logo unit, students have
shown less difficulty in writing papers that really are developed
through extended definition. They do not necessarily write better
essays immediately, but they do write essays that are developed
in the assigned way far more regularly than they do without the
Logo work.

But why stop here? The recursion that we see at work in
GROWSQUARES, though a bit more complex than that in
MANYBOX, still falls far short of the complexity of even the most
simple paragraph developed by extended definition. Couldn’t we
find Logo exercises that would involve still more complicated uses
of recursion and thus replicate more closely the process of ex-
tended definition? Actually, most of the books on Logo contain
numerous projects of this type. The main practical limitation is

JOURNAL OF TEACHING WRITING 49

the amount of time we want to invest in this investigation. In the
future, though, as we encounter more and more students who
have long ago explored the GROWSQUARES procedure in
elementary school or at home, we will surely find that we can
start with these more complicated problems rather than ending
with them. Of course, such a situation may demand a little more
of us as programmers, but these are the costs of progress.

Brendan J. Desilets currently teaches at the John Glenn Middle School in
Bedford, Massachusetts.

WORKS CITED

Abelson, Harold. Logo for the Apple II. New York: McGraw Hill, 1982.

Blickhahn, Katherine M., et al. Writing: Unit Lessons in Composition, 1A. Boston:
Ginn and Company, 1964.

Brooks, Cleanth and Robert Penn Warren. Modern Rhetoric: Shorter Edition.
New York: Harcourt, Brace and World, 1961.

Carter, Ricky. “The Complete Guide to Logo.” Classroom Computer News 3
(April 1983): 35-39.

Harvey, Wayne. “Which Programming Language is Right for You?” Classroom
Computer Learning 4 (April/May 1984): 51-53.

Papert, Seymour. Mindstorms: Computers, Children, and Powerful Ideas. New
York: Basic Books, 1980.

Warriner, John E.. Warriner’s English Grammar and Composition: Complete
Course. New York: Harcourt Brace Jovanovich, 1973.

50 EXTENDED DEFINITION

	1986spring046_page 43
	1986spring047_page 44
	1986spring048_page 45
	1986spring049_page 46
	1986spring050_page 47
	1986spring051_page 48
	1986spring052_page 49
	1986spring053_page 50

