PGC1α protects against cisplatin-induced skeletal muscle dysfunction

Rohit Chatterjee¹, Joshua Huot², Fabrizio Pin², Andrea Bonetto²

¹Indiana University School of Medicine; ²Indiana University School of Medicine, Department of Surgery

Background and Hypothesis:

We and others have shown that chemotherapy promotes skeletal muscle wasting and weakness (i.e., cachexia) by disrupting mitochondrial homeostasis and causing oxidative stress. Peroxisome proliferative-activated receptor gamma coactivator 1-alpha (PGC1 α) is a pivotal regulator of mitochondrial biogenesis and is involved in reducing oxidative damage in skeletal muscle. Hence, in the present study we investigated whether overexpression of skeletal muscle PGC1 α (mPGC1 α) was sufficient to preserve skeletal muscle mass and function in young and old mice treated with cisplatin.

Experimental Design or Project Methods:

Young (2-month; n = 5) and old (18-month; n = 5-8) male wild type (WT) or mPGC1 α transgenic mice were treated with cisplatin (2.5mg/kg), while age-matched WT mice received vehicle for 2 weeks. Animals were assessed for muscle force and motor unit number estimation (MUNE). Skeletal muscles were weighed and processed for molecular analyses, including assessment of mitochondrial protein content.

Results:

Young WT mice exposed to cisplatin showed evidence of cachexia, as indicated by reduced gastrocnemius size (-16%), plantarflexion force (-8%) and MUNE (-56%), whereas mPGC1 α mice were only partially protected. Interestingly, despite exacerbated cachexia in aged WT mice treated with chemotherapy, as demonstrated by markedly decreased gastrocnemius size (-22%), plantarflexion force (-18%) and MUNE (-80%) compared to untreated WT, muscle mass, strength and innervation were fully preserved in age-matched mPGC1 α mice. Follow-up molecular analyses revealed that WT animals exposed to chemotherapy present loss of muscle mitochondrial proteins PGC1 α , OPA1 and CytochromeC, whereas their levels in mPGC1 α mice were robustly increased.

Conclusion and Potential Impact:

Altogether, our data suggest that PGC1a plays a pivotal role in preserving skeletal muscle mass and function, usually impaired by anticancer treatments. These findings enforce developing mitochondria-targeting therapeutics to combat the negative consequences that chemotherapy has on skeletal muscle.