MAK122: A Novel Drug Utilizing Innovative Fracture Site Targeting Technology to Improve Bone Healing

Nicholas Hux¹, Jeffery Nielson^{3,4}, Caio de Andrade Staut¹, Vincent Alentado², Abduallah Elsayed¹, Christopher Dalloul¹, Samuel Zike¹, Nikhil Tewari¹, Murad Nazzal¹, Hanisha Battina¹, Alex Brinker¹, Mustafah Shaikh¹, Sarah Myers¹, Rachel Blosser¹, Ushashi Dadwal¹, Jiliang Li⁶, Stewart Low^{3,5}, Philip Low^{4,5}, Melissa Kacena^{1,7}

Departments of ¹Orthopaedic Surgery and ²Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN; ³Novosteo Inc., West Lafayette, IN; Departments of ⁴Chemistry and ⁵Medicinal Chemistry and Pharmacology, Purdue University, West Lafayette, IN; Department of ⁶Biology, Indiana University Purdue University, Indianapolis, Indianapolis, IN; ⁷Richard L. Roudebush VA Medical Center, Indianapolis, IN

Megakaryocytes play a pivotal role in the bone fracture healing process through enhancing osteoblast proliferation, osteoclastogenesis, and angiogenesis. Current fracture repair therapies require direct implantation during surgery (BMP-2, grafts etc.), which has limitations. In order to address this, a novel drug, compound MAK122, was created with targeting technology that directs its actions to the fracture site without needing to be implanted during surgery, limiting undesirable offsite effects, increasing the quantity of drug at the fracture site, and allowing for non-invasive treatment following assessment of the natural healing process. Therefore, this study examined the ability of MAK122 to stimulate megakaryocytes and subsequent bone healing. To accomplish this, male mice on a C57BL/6 background underwent a surgically induced femoral fracture. Following surgery, the mice were injected daily for the first 7 days with either saline (vehicle) or MAK122. Mice were then euthanized 2, 3 and 4 weeks postsurgery. Fracture healing was assessed by standard and novel methodologies. Biweekly X-rays were evaluated and bone union was scored showing that MAK122 accelerated bone healing compared to controls. Ex vivo µCT analysis demonstrated that MAK122 increased callus volume and the percentage of mineralized callus tissue compared to vehicle treatment. Biomechanical testing showed that MAK122 treatment resulted in stronger repairs as compared to vehicle treated controls with nearly a 2-fold increase in twist to failure and toughness parameters. Additionally, histological assessment demonstrated accelerated remodeling in MAK122 treated femurs compared to those treated with saline. Taken together, these pre-clinical data suggest that MAK122 is capable of promoting an environment in which megakaryocytes can favorably influence bone remodeling mechanisms, expediting fracture repair in murine models. Though further pharmacokinetic, pharmacodynamic, and toxicology studies are required, MAK122 displays potential to serve as a state-of-the-art therapy for improving fracture healing in humans.