A NEW TRIANGLE AND SOME OF ITS PROPERTIES. BY ROBERT JUDSON ALEY.

Explanation of Figure. — ABC is any triangle, of which M is the circumcenter, O the incenter, H the orthocenter, and Q Nagel's Point. A'A''', B'B''' and C'C''' are diameters perpendicular to the sides BC, CA, AB, respectively.

I. If A^{v} , B^{v} , C^{v} are the middle points of AA', BB', CC', respectively, then OM is the diameter of the circumcircle of $A^{v}B^{v}C^{v}$.

Since A^{v} is the middle point of AA',

 MA^{v} is parallel to $AA^{\prime\prime\prime}$.

But $AA^{\prime\prime\prime}$ is perpendicular to $AA^{\prime},$

 \therefore MA^{v} is perpendicular to AA'.

Hence MA^{v} O is a right angle.

Similarly MB v O, and MC v O are right angles.

 \therefore a circle upon OM as diameter will pass through A^{v} , B^{v} , C^{v} .

II. The triangle $A^{v}B^{v}C^{v}$ is similar to Nagel's triangle A''B''C''.

 $\angle B^{\mathbf{v}} C^{\mathbf{v}} A^{\mathbf{v}}$ is the supplement $\angle B^{\mathbf{v}} O A^{\mathbf{v}}$.

$$\angle B^{v} O A^{v} = \angle A O B.$$

$$= \pi - (\frac{1}{2} A + \frac{1}{2} B).$$

$$= A + B + C - \frac{1}{2} (A + B).$$

$$= C + \frac{1}{2} (A + B).$$

$$= - \angle B^{v} O A^{v} = \pi - [C + \frac{1}{2} (A + B)].$$

$$= A + B + C - [C + \frac{1}{2} (A + B)].$$

$$= \frac{1}{2} (A + B).$$

$$\therefore B^{v} C^{v} A^{v} = \frac{1}{2} (A + B).$$

 MA^{v} is perpendicular to AA'.

 MC^{v} is perpendicular to CC'.

$$\angle (MA^{\mathrm{v}}, MC^{\mathrm{v}}) = \angle (AA', CC').$$

i. e.,
$$\angle A^{v}MC^{v} = A'OC$$
.

$$=\frac{1}{2}(A+C).$$

But
$$\angle A^{\mathsf{v}} MC^{\mathsf{v}} = A^{\mathsf{v}} B^{\mathsf{v}} C^{\mathsf{v}}$$
.

$$\therefore \angle A^{v} B^{v} C^{v} = \frac{1}{2} (A + C_{0})$$

Similarly $\angle B^{v} A^{v} C^{v} = \frac{1}{2} (B + C)$.

The angles of the triangle A''B''C'' (Nagel's triangle) are $\frac{1}{2}$ (B + C), $\frac{1}{2}$ (A + C), $\frac{1}{2}$ (A + B), respectively. (Schwatt's Geometric Treatment of Curves, page 39.)

 \therefore $A^{\vee}B^{\vee}C^{\vee}$ is similar to A''B''C''. It is also similar to A'B'C', for A'B''C' and A''B''C'' are similar.

III. O is the centre of perspective of $A^{v}B^{v}C^{v}$ and M'B'C'.

IV. E, the centroid of ABC, is the internal center of similitude of the circumscribing circles of A''B''C'' and $A^{\,v}B^{\,v}C^{\,v}$.

OM is parallel to HQ.

It is known that II, E, M, are collinear, as are also O, E, Q.

... HM and OQ intersect at E.

 \therefore E is the internal center of similitude.

V. E is also the center of perspective of $A^{v}B^{v}C^{v}$ and A''B''C''.

For, consider the triangle A1"1'.

 $A^{\prime\prime}$ $A^{\rm v}$ is a median and so is A $M_{\rm a}$.

 \therefore A" A passes through E.

Now consider the triangle $BB^{\prime\prime}B^{\prime}$.

 $B''B^{\rm v}$ is a median and so is $BM_{\rm h}$.

... $B''B^{v}$ passes through E.

In the same way we can show that $C''C^{v}$ also passes through E.

- ... E is the center of perspective of A''B''C'' and $A^{v}B^{v}C^{v}$.
- VI. All the lines in $A^{v}B^{v}C^{v}$ are just one-half the corresponding lines in A''B''C''.

This is an immediate consequence of the fact $OM=\frac{1}{2}$ HQ. (Schwatt, Geomet. Curves, page 40.)

VII. The sides of the triangle $A^{v}B^{v}C^{v}$ are oppositely parallel to the corresponding sides of A''B''C'', i. e., $A^{v}B^{v}$ is parallel to B''A'', etc.

OM is parallel to HQ.

 $HA^{\prime\prime}$ is perpendicular to AA^{\prime} .

MA' is perpendicular to AA'.

 $\therefore \angle A''HQ = \angle OMA^{v}.$

In the same way

 $\angle B''HQ = \angle OMB^{v}$.

 $\angle C''HQ = \angle OMC^{v}$.

This shows that the points A^{v} , B^{v} , C^{v} are located with respect to Q, just as $A^{\prime\prime}$, $B^{\prime\prime}$, $C^{\prime\prime}$ are located with respect to Q.

 \angle (OM, $B^{\mathbf{v}}A^{\mathbf{v}}$) is measured by $\frac{1}{2}$ (arc $OB^{\mathbf{v}}$ + arc $A^{\mathbf{v}}C^{\mathbf{v}}$ + arc $C^{\mathbf{v}}M$).

 \angle (HQ, A"B") is measured by $\frac{1}{2}$ (arc B"Q + arc A"C" + arc C"H).

But arc OB^v measures the same angle in the circle on OM as diameter, that the arc $B^{\prime\prime}Q$ measures in the circle on HQ as diameter.

The same is also true of the arcs $A^{v}C^{v}$ and $A^{\prime\prime}C^{\prime\prime}$, and $C^{v}M$ and $C^{\prime\prime}H$.

$$\therefore \angle (OM, B^{\mathsf{v}}A^{\mathsf{v}}) = \angle (HQ, A''B'').$$

But since OM is parallel to HQ, we have at once A''B'' parallel to $B^{v}A^{v}$.

In the same way we may prove that B''C'' is parallel to C^vB^v and C''A'' parallel to A^vC^v .

... the sides of $A^vB^vC^v$ are oppositely parallel to the corresponding sides of A''B''C''.

It is known (Schwatt, page 41) that O is Nagel's point in the triangle $M_a M_b M_c$, and that M is the orthocenter. The circle on OM as diameter is Nagel's circle for the triangle $M_a M_b M_c$. We know that the sides of $M_a M_b M_c$ are oppositely parallel to the sides of ABC, and we have proven that $A^v B^v C^v$, inscribed in the Nagel's circle of $M_a M_b M_c$, has its sides oppositely parallel to the sides of Nagel's triangle for ABC.

... A'B'C' is Nagel's triangle for Ma Mb Mc.