Material for the Study of the Variation or Pimephales notatts (Rafinesque), is Turiee Lake and in Shoe and Tippecanoe Lakes.* By. J. H. Voris.

As a part of the general plan of the Indiana University Biological Station to study the variation of the same vertebrates in two contiguous lakes belonging to different water systems, I collected during the summer of 1895 a large series of Pimephales notatus in Turkey Lake and the Shoe and Tippecanoe Lakes. Shoe Lake is a small body of water perfectly land locked, but which has but recently become cut off from communication with Tippecanoe Lake. Tippecanoe Lake is a long narrow sheet of water near the head waters of the Tippecanoe River, a tributary of the Wabash. Turkey Lake occnpies a corresponding position in the St. Lawrence system. At different points in Turkey Lake 536 specimens were collected in the months of June, July and August. In Tippecanoe, seventytwo specimens were taken, and in Shoe Lake, forty-three.

The species is much more abundant in Turkey Lake than in the other two lakes. Many individuals are fonnd along the shallow rocky shores, and their eggs are found in abundance plastered on the under surface of boards and other submerged objects near the margin of the lake where the water is not more than one or two feet deep. The fry were seen in quiet, warm weather along the shores by the laboratory.

A large number of characters were examined at the begimning of the study, but as many of these, for one reason or another, were found not available for the purposes in hand, the data were finally limited to the number of dorsal and anal rays and to the scales of the lateral line. While this fish has the reputation of being very variable, the characters examined are remarkably constant, and in the number of dorsal and anal rays the species may be said to have reached a stage of stable equilibrium, as the following pages will demonstrate. Since it was not possible in every case to determine absolutely those scales in the lateral line which had and those which had not spores, this character is omitted from the paper.

A miscellaneous lot of 536 specimens from Turkey Lake range in length from 25 mm . to 73 mm . The largest number of individuals of a giveu length is 37 and these have a length of 47 mm . A curve constructed to show the relative number of specimens of a giren length shows that they do not fall into distinct groups of different ages.

[^0]The dorsal fin has one spine-like ras, eight rays, the last one of which is double, and one rery small or rudimentary ray before the spine. The variation from this is very small indeed. Of the 536 specimens from Turkey Lake, 97 per cent, hare this number of rays, which may be designated thus: II S1, 2, the "II" standing for the rudimentary ray and spine, the " s " for the eight rays, and the " $1 / 2$ " for the double of the last ras. The average number of rays is 8.0037 . The table shows the results obtained.

DORSAL FIN.

No. of Rays.	No. of spreimens.	No. of Rays.	No. of Specimens.
II $81 / 2$.	519	I $91 / 2$ 1
II $91 / 2$.	4	I $7^{1 / 2}$	
1 g 1/2.	9	II 6	
II *	. 1		

It will be seen from the table that orer one-balf of those that vary from II $S \not 12$ are different only in the absence of the rery small rudimentary ray: This is so small and lies so close to the base of the spine that it camot be seen muless especially looked for. Only five specimens have nine full rays, one with seren and one with six, making in all but six specimens that hare a rariation of one full ray, and one a rariation of two rays from II $81 / 2$.

The rariation in the anal fin is a little more than in the dorsal, 92.91 per cent. have II $71 / 2$ rays. The anal fin has one less ray than the dorsal, and the arerage for the whole is $7.00: 37$. The greater per cent. of variation in this fin is due to the absence of the rutimentary ray. Only four specimens have oht complete ray more, ant two one less than HThe. The table shows the results obtained.

ANAI, FIN.

No. of Rays,	-	No. of Sperimens.	Vo. of liazis.	No. 隹 Sprecimons.
II $71 / 2$.		498	II fix	I
II $81 / 2$		3	I 61/2	1
I $71 / 2$		30	I $81 / 2$	1

The following table shows the dorsal and anal fins, together with the number of specimens that each combination contains. It will be seen from this table that there are but three specimens in which there is a variation from the prevailing number in both the dorsal and anal fins. Wach of these lias the small rudimentary ray absent, and one specimen has one complete fay more than the prevailing number. It seems that
there is no co-ordination in the variation of these two fins. The per cent. of variation above or below the prevaling number in each case is so small that it may be regarded as purely accidental. It least it can be said that this fish in Turkey Lake has reached a stage of stable equilinrium as res gards this character.

l/irsal.	. 1 mal.	Fro.	Horsal.	Allal.	No.
II $81 / 2$.	II $71 / 2$	484	II $91 / 2$	II $71 / 2$	
If $81 / 2$.	I $71 / 2$.	28	II 6	II $71 / 2$.	1
I $81 / 2$	I1 $71 / 2$	7	II $81 / 2$	II $81 / 2$.	3
t $81 / 2$.	I 7	2	II $81 / r$	I $61 / 3$	
$171 / 2$.	II $71 / 2$	1	II 8	I1 $71 / 2$.	1
I $91 / 2$.	I $81 / 2$	1	II $81 / 2$.	II $61 / 4$.	1
II $81 / 2$.	II \uparrow	2			

The dorsal and anal fins of seventy-two specimens from Tippecanoe Lake were eximined and the results obtained are shown in the following tables:

Dorsal Fin.	No. Specimens.	Anal Fin.	Vo. Speciment.
II 81/2	64	II $71 / 2$	69
II $91 / 2$	3	II $81 / 2$	2
II $71 / 2$	2	I $71 / 2$	1
	. 3		

DORSAL AND ANAL FINS COMBINED.
Dorsel Fï. -Inal Fin. No. Sipecimens. Dorsal Fin. Inal Fin. No.Spocimens.

A comparison of these tables with the preceding ones shows that the per cent. of variation in the Tippecanoe specimens is much larger than in those from Turkey Lake. Howerer, the number in the one case is not sufficient for a definite conclusion. Leaving out of consideration the small rudimentary ray, which would not be noticed in an ordinary examination, and considering only those cases in which there is a rariation of at least one complete ray from the prevailing number, the per cent. in the dorsal fin of the Turkey Lake specimens is 1.3 , while in those from Tippecanoe. it is 7. The per cent. of Turkey Lake specimens, that have a varlation of at least one ray from the prevailing number in the anal fin, is 1.1, while in the Tippecanoe specimens it is 2.8 .

Forty-three specimens from Shoe Lake were examined, and the results obtained are shown in the tables below:

Dorsal Fin.	To. Ȧurcimens.	Anal Fin.	Sio. specimens.
II $81 / 2$	41	II $71 / 2$	10
I $\times 1 / 2$.	2	I $71 / 2$	- \because
		II $6^{1} \frac{2}{2}$	- 1

DORSAL AND ANAL FINS COMIBINEI.

Dorsal fin.	Imal Fin.	No. Specimenx.	Jursal Fin.	Inal Fin.	Vo. specimens.
II $81 / 2$	II $\mathrm{i}_{1}^{1 / 2}$	3.	II $\mathrm{s}^{1 / 2}$	$\mathrm{J}^{1 / 2}$	
$181 / 2$	II $7^{1 / 2}$	2	11	II 7^{1}	

The number of specimens here is too small to draw any definite conclusions in comparison with the others. It is to be noticed, howerer, that there is but one ease in which the variation from the prevailing number is one complete ray, amf that occurs in the anal fin.

The scales in the lateral line of each side of 500 specimens from Turkey Lake were counted. They range from 40 to 48 in number, and the largest number of individuals have 44 . The table below shows the number of individuals which have a given number of scales on each side. The striking thing shown by this table is the regularity of the variation on the right side. The largest number of individuals has 44 seales, and there is a range of fotr" both above and helow this.

On the right side the variation is nearly symmetrical. On the left side there is not such a marked symmetry. The number of specimens that hare fewer than 44 seales on the right side is but one more than those that have more. On the left side, there are 190 that have fewer than 44 scales, and 142 that have more, a difference of 48 .

The average deviation, or index of variability for the right is .9369 , for the left, . 91916.

In the following table erery possible combination of scales for the two sides is given with the actual number of specimens for each combination in one column, and the number according to the laws of probability in a parallel column:

Right. Left.

Actual
Number of
Specimens.

Actual
Number of
Suecimens
Specimens.
\qquad

40	40	1	0	43	40	0	0	46	40	0	0
40	41	0	0	43	41	3	2	46	41	0	1
40	42	1	0	43	42	15	11	46	42	0	3
40	43	1	1	43	43	56	34	46	43	4	10
40	44	0	1	43	44	37	42	46	44	9	12
40	45	0	1	43	45	13	23	46	45	9	7
40	46	0	0	43	46	2	10	46	46	13	3
40	47	0	0	43	47	0	2	46	47	0	1
40	48	0	0	43	48	0	1	46	4.	2	0
41	40	0	0	44	40	0	0	47	40	0	0
41	41	2	0	44	41	1	2	47	41	0	0
41	42	2	1	44	42	14	14	47	42	0	1
41	43	2	2	44	43	37	43	47	43	0	3
41	44	1	2	44	44	69	53	47	44	2	4
41	45	0	1	44	45	31	28	47	45	2	2
41	46	0	1	44	46	4	13	47	46	3	2
41	47	0	0	44	47	1	3	47	47	3	0
41	48	0	0	44	48	0	1	47	48	1	0
42	40	0	0	45	40	0	0	48	40	0	0
42	41	2	1	45	41	0	2	48	41	0	0
42	42	10	3	45	42	3	11	48	42	0	0
42	43	14	10	45	43	22	33	48	43	0	1
42	44	9	13	45	44	41	41	48	44	0	1
42	45	1	6	45	45	33	22	48	45	1	0
42	46	0	2	45	46	17	10	48	46	1	0
42	47	0	1	45	47	4	2	48	47	0	0
42	48	0	0	45	48	1	1	48	48	0	0

The two columus show that there is a striking deriation from the calculated results, the result of a marked correlation in the variation or tendency to or toward bilateral symmetry. As calculated, the chance association of the sane number of scales on the two sides would occur 11. times for all combinations, it actually oceurs 187 times. The specimens fall into sereral definite grous in which the same number of scales on each side forms the renter of a group. This is not quite true at the extremes, but is especially marked in the central groups into which the large majority of the specimens fall. There are three specimens in the first group. each of which has to scales on the right side. One has 40 scales on the left side, one 42 , and one 43 . The greatest difference in the nmber on the two sioses is three. There are three specimens in the first group of the calculated colnmn. Each has 40 scales on the right side, one has 43 on the left, one 44 and one 45 . 'The greatest difference in this case is five, and none latre the same mumber on both sides. In the second group of the actual column there are seren specimens, two with 41 scales on ealch side, two with 41 on the right side and 42 on the left, two with 41 on the right and $1: 3$ on the left, and one with 41 on the right and 44 on the left. The greatest difference in the number of scales on the two sides is three. There are seren specimens in the second group of the calculated column. Wach has 41 soales on the risht sirle and on the left side one has 42 , two have 43 , two 44 , one 45 , and one 46 . As in the first group of this column, none hare the same number on both sides, and the greatest difference is five. The number of specimens in the fourth group of the actual column is $\mathbf{1 2 6}$. Each has 4.3 scales on the right side, and on the left three hare 41, fitteen 42, fifty-six 4:3, thirty-seren 44 , thirteen 45 and two 46 . The largest number of indiriduals in this group which have the same combination, hare the same number of scales on both sides, and the greatest difference in the number on the two sides as in the other cases is three. The calculated column of the same group contains 125 specimens, each of which has 43 scales on the right side. On the left side, two have 41 , eleven have 42 , thirty-four 43 , forty-two 44 , twenty-three 45 , ten 46 , two 47 and one 48 . The largest number in this case with the same combination has 43 scales on the right side and 44 on the left, and the greatest difference, as before, is tive.

The number of specimens in the same fromps of the two eotumns is the same in most cases, and in no case is there a difference of more that one. This difference is perhaps due to the dropping and adding of frac-
tions. In the calculations fractions of less value than one-half were dropped and those of a ralue of one-half or more were called one. It will be observed from the groups described-and the same is true of the other groups-that when the number of scales is the same on each side or not more than a difference of one, the actual column exceeds the calculated, and as the difference increases, the calculated column exceeds the actual. A comparison of the corresponding groups in the two columns in every case gires the same results as in those described, all of which demonstrates the tendency to bilateral symmetry or a marked correlation in the rariation of the two sides.

Preliminary Note Upon the Arrangement of Rods and Cones in the Retina of Fiehes. By C. H. Elgenvann and George Hansell.
[Abstract.]
A variety of fish eyes were examined, and it was found that in most cases the rods and cones are arranged in a regular pattern. This pattern is either that described by Hannorer and Ryder for fishes or a slight modification of this pattern.

Degeneration in tile Eyes of the Amblyopside, Its Plan, Process and Cau-es. By Carl H. Eigenmann.
[Summary only.]

1. There are at least six species of "blind fishes," Amblyopside, inhabiting North America, three with well-developed eyes and three with mere restiges.
2. The three species with vestigial eyes are descended from generically distinct ancestors with well-developed eyes.
3. These species can be more readily distinguished by the structure of their eyes than by any other characteristic.
4. The most highly-developed eye is much smaller and simpler than the eye of normal-eyed fishes.
5. The structure of their eyes may be represented by the following key to the genera and species.
a. Vitreous body and Iens normal, the eye functional. No scleral cartilages. Eye permanently connected with the brain by the optic nerve. Eye muscles normal. No optic fibre layer. Minimum diameter of the eye $.700 \mu$.

[^0]: *Contributions from the Biological Laboratory of the Indiana University, No. 19.

