## Concerning Spheric Geometry.

liy Dayid A. Rothrock.

$\qquad$ (Abstract.)

In this paper is developed a system of analytic gemmetry upon the surface of a sphere, in which the axes of reference are great circles and the coürdinates of a point are ares of great circles. With a proper choice of axes, the eruations of the loci known as spheric straight line, spheric circle, spheric ellipse, spheric hyperbola, spheric parabola defined metrically as in plane amalytics, appear in a form analogons to their equations in the plane.

The paper also investigates other loci of more complex character, together with a discussion of the notion of spheric pole and polar, radical axis, ete. A smmary of the literature unon this system of geometry is also included.

Bloomington, Indiana,
Norember 30, 1911.

## On the Representations of a Number as the Sum of Consecutive Integers.

By T. E. Mason.

(Abstract.)
Theorem:
If we define a series of consecutive integers so as to include zero and negative numbers and if we consider a number itself as a series of consecutive integers with one term, then a momber

$$
\mathrm{m}=2^{\alpha} \cdot \mathrm{p}_{1}^{\alpha_{1}} \cdot \mathrm{p}_{2}^{\alpha_{2}} \ldots \ldots \mathrm{p}_{\mathrm{r}}^{U_{\mathrm{r}}},
$$

where the p's are the odd prime factors of $m$ and the a's the power to which they occur, may be expressed as the smm of a series of consecutive integers in

$$
2\left(a_{1}+1\right)\left(t_{2}+1\right) \ldots \ldots\left(a_{\mathbf{r}}+1\right)
$$

ways. When $m=2^{n}$ it may be so expressed in two ways.
One-half of the total number of series will have an even number of terms and one-half will have an odd number of terms.

One-half of the total number of series will consist of all positive terms and one-half the number of series will contain zero or zero and negative terms.

We shall now apply this theorem to express 15 as the sum of consecutive integers.

$$
15=3 \times 5 .
$$

The number of series will be

$$
2(1+1) \quad(1+1)=8 .
$$

No. of
terms. Mid terms. Series.

| 1 | 15 | 15 |
| ---: | :---: | :---: |
| 3 | 5 | $4+5+6$ |
| 5 | 3 | $1+2+3+4+5$ |
| 15 | 1 | $-6-5-4-3-2-1+0+1+2+3+4+5+6+7+8$ |
| 2 | 7,9 | $7+8$ |
| 6 | 2,3 | $0+1+2+3+4+5$ |
| 10 | 1,2 | $-3-2-1+0+1+2+3+4+5+6$ |
| 30 | 0,1 | $-14-13 \ldots-4-3-2-1+0+1+2+3+4+5+\ldots+14+15$ |

Indiana Unircrsity, November, 1911.
[18-29034]

