Concerning Spheric Geometry.

BY DAVID A. ROTHROCK.

(Abstract.)

In this paper is developed a system of analytic geometry upon the surface of a sphere, in which the axes of reference are great circles and the coördinates of a point are arcs of great circles. With a proper choice of axes, the equations of the loci known as spheric straight line, spheric circle, spheric ellipse, spheric hyperbola, spheric parabola defined metrically as in plane analytics, appear in a form analogous to their equations in the plane.

The paper also investigates other loci of more complex character, together with a discussion of the notion of spheric pole and polar, radical axis, etc. A summary of the literature upon this system of geometry is also included.

Bloomington, Indiana, November 30, 1911.

BY T. E. MASON.

(Abstract.)

Theorem :

If we define a series of consecutive integers so as to include zero and negative numbers and if we consider a number itself as a series of consecutive integers with one term, then a number

$$m = 2^{a}$$
, $p_1^{a_1}$, $p_2^{a_2}$, ..., $p_r^{a_r}$,

where the p's are the odd prime factors of m and the a's the power to which they occur, may be expressed as the sum of a series of consecutive integers in

$$2(a_1+1) (a_2+1) \dots (a_r+1)$$

ways. When $m = 2^n$ it may be so expressed in two ways.

One-half of the total number of series will have an even number of terms and one-half will have an odd number of terms.

One-half of the total number of series will consist of all positive terms and one-half the number of series will contain zero or zero and negative terms.

We shall now apply this theorem to express 15 as the sum of consecutive integers.

$$15 = 3 \times 5.$$

The number of series will be

Mo of

λ

```
2(1+1)(1+1)=8.
```

NO. 01		
terms.	Mid terms.	Series.
1	15	15
3	$\overline{5}$	4 + 5 + 6
5	3	1 + 2 + 3 + 4 + 5
15	1	-6-5-4-3-2-1+0+1+2+3+4+5+6+7+8
2	7,8	7 + 8
6	2,3	0 + 1 + 2 + 3 + 4 + 5
10	1,2	-3 - 2 - 1 + 0 + 1 + 2 + 3 + 4 + 5 + 6
30	0,1	$-14 - 13 \dots - 4 - 3 - 2 - 1 + 0 + 1 + 2 + 3 + 4 + 5 + \dots + 14 + 15$
Indiana University,		
November, 1911.		
[18-29034]		