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Newtonian Idea of the Calculus.

Arthur S. Hathaway.

The liistory of the calculus shows that even a mathematical theory

cannot escape the effects of environment. Sir Isaac Newton was for

many years the sole possessor of a knowledge of the calculus, and

used it with a power which few have been able to equal since his time;

yet he has had practically no influence on its present form of de-

velopment. This was due to Newton's dislike for controversy, so that

instead of contending for his ideas, he let them appear only in con-

cise and general form, or even not at all. With the exception of his

first tAvo papers on optics, "all of his works were published only after

the most persistent solicitations of his friends, and against his own

wishes." The criticism which would have aroused an ambitious man to

a vigorous defense, had the opposite effect on his disposition. "I was

so persecuted." he wrote, "with discussions arising out of my theory of

light, that I blamed my own imprudence for parting with so substantial

a blessing as my ([uiet to run after a shadow."

Newton was well versed in the method of fluxions, and the in-

verse method, tliat is in differentiation and integration, by the year

1GG6. In li!(;;t he circulated a manuscrii)t on the subject among his

friends, but I'efused tlieir solicitations to have it ptiblished. and it was

Hot until ltiil.3 that it was communicated to the scientific world by

Wnllis. in the second volume of his works. Diu'ing this interval of a

quarter of a century. NcAvton had changed his ideas in important

respects, through extensive use of the calculus. He had developed his

Theory of Light, discovered the Binomial Tlieorem. determined the Law
of Ciravitation, and the Principles of Dynamics, and made important in-

vestigations in all departments of mathematical and physical science.

Althougli the Friinijiid. wliich appeared in 1(187. contained no direct

information on the calctilus. yet its fundamental ideas and principles

were involved in every detail of the work. The development of the

/'liiiciitifi is due to the calculus, but NeAVton iindertook the laliorious

task of translating everything into the elementary geometrical methods

of the time and omitted many results which he had olitained by the

calculus, because he could not so interpret them. Many things have

been discovered since his time tliat were afterwards found in his papers
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and correspondence, and he left many undemonstrated theorems, whose

proofs baffled succeeding mathematicians for 50. ICMJ, and even 200 years.

The Quadrature of Curres. published in 1704, and the Principia, are

the proper sources for Newton's matured ideas on the calculus, and not

his earlier manuscript, published by Wallis. The earlier paper adopts

the infinitesimal method of neglecting small quantities which is now
associated with Leibnitz's calculus, not, however, with the latter's dis-

regard of logic, but in connection with the idea of a limit which is the

modern foundation of that method.

Newton states in the Quadrature of Curves that "in mathematics the

minutest errors are not to be neglected." Also,

"I consider mathematical quantities in this place, not as consisting

of very small parts, but as described by continuous motion. Lines are

described and thereby generated, not by the apposition of parts, but

by the continued motion of points; superficies by the motion of lines;

solids by the motion of superficies: angles by the rotation of sides; por-

tions of time by continual fiux: and so on in other quantities. These

geneses really take place in the nature of things and are daily seen in

the motion of bodies."

He then goes on to define fluxions, or as we would now call them,

differentials:

"Fluxions are as near as we please, as the Increments of fluents, gen-

erated in times which are the same and as small as possible, and to

speak accurately, they are in the prime ratio of nascent increments;

yet they can be expressed by any lines whatever which are proportional

to them."

Newton immediately illustrates this definition by the abscissa and

ordinate of a curve, whose differentials are shown to be any correspond-

ing increments of abscissa and ordinate along the tangent line. This,

and numerous similar illustrations in the Priucipia, show that Newton

meant by the ultimate ratio of vanishing quantities, the limit of the

ratio of any finite proportionals to the ranishiny (juantities. See. for ex-

ample, Prine. Bk. 1, Lemma 1, Art. 12. "Ultimate Ratio of Vanishing

Quantities." Also, Lemmas 7, 8, 9. Newton did not consider the modern

question as to whether or not this ratio Avas definite, and the answer to

that question is not pertinent to his definition. In other words, differen-

tials can exist when such ratio is indeterminate. Translated into its

exact modern equivalent, his definition is:
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Corretiponding differentials are, as near as we please, proportionals to correspond-

ing and indefinitely small increments of variables, and to speak accurately, they are

corresponding limits of such proportionals.

The power and generality of this definition can only be understood

after a eareful study of its consequences. It applies whatever the num-

ber of independent variables. It is the mathematical foundation of

Newton's conception of the state of change of variables, in which cor-

responding differentials are made to signify corresponding increments.

In other words, corresponding increments of a state of change of rariables

are as near as we please, proportionals to corresponding and indefinitely

small increments of the variables.

As an illustration of the method, consider z= xy, and as usual, let

A^i A.V. ^^. denote any corresponding increments of .r, y, z. Then,

A2=-i-A^/+ //
A-V+ A;r. Ay

Let iV be a variable number which becomes indefinitely large in any

way whatever (as iV^= 1, 2, 3, 4, and so on indefinitely). Conceive ^.r, Ay»

to diminish as N increases, so that their proportionals, N/\x, Ni\y, remain

finite and approach limits designated by dx, dy {i\^x^dx/N+ 8/ N'^,

/\y^dy'N-\-5:N^, for example). Then if dz denote the limit of the re-

maining proportional N^jy z, the equation from which it is to be determined

is N/\z= xN_\y 4- yNA^x + Nl\x. l\y, which gives, by the theorems of

limit, dz = xdy + ydx.

Here, the ratio dz/dx is absolutely indeterminate, since it depends upon

the values chosen for d.r, dy.

Leibnitz rediscovered the calculus in 1676, and immediately published

his methods and spread them over Europe. His right to the title of inde-

pendent discoverer was disputed by the friends of Newton, because when

Leibnitz was just turning his attention to mathematics in 1673, he visited

London and consulted some manuscripts of Newton. Leibnitz's defense is

that he did not see the manuscript on the calculus, and his notes taken at

the time, and afterwards discovered, contain only references to Newton's

papers on optics. It is fortunate in respect to notation that we have

received the calculus from the hands of Leibnitz rather than Newton ; but

the history of the calculus, from Leibnitz on, revolves about objections to

his infinitesimal methods. In order to avoid those methods, Lagrange

recast the calculus into practically its present form. He regarded the

differentials of the independent variables as their small actual increments,

and the differential of a dependent variable as that part of its increment

which is of first degree when it is expanded in ascending powers of the
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independent increments. In his method, the principle quantities were the

differential coefficients, and if z were a function of r, y, he wrote

dz , dz
dz= -rr- dx -\- -r- dy

dx ' dy ^

where dzUJx was a whole symbol for the coefficient of dx in dz, and not the

quotient of dz by (/.'; and similarly for dzidy.

This idea was not received with favor, partly because it made the cal-

culus depend upon expansions in series, whereas, one important feature of

the calculus was the determination of such expansions.

At present, we have a derivative calculus, with a differential notation,

in which differentials have significance only in quotient forms ; in fact the

derivative is Lagrange's differential coefficient, and the two terms are used

interchangeably. The student is taught that the quotient form is an in-

separable symbol, but the notation, and the calculus itself, eventually

require their separation. The explanations which liave been devised for

such separation of inseparable symbols are sometimes remarkable. The

method of rates is simply to define the derivative dy dx as the rate at which

y is changing, and dy, dx, as any quantities whose ratio is dy dx. This is

not the same as Newton's method, who makes dy the amount which y

changes in its state of change when .r changes by dx, and thence (/// dx is

the change of y per unit cliange of .' . It does matter whetlier we make dif-

ferentials the prime quantities, and tlience deduce the significance of their

ratios, or whetlier we make the ratios the prime quantities, and thence

deduce differentials. For, two variables can have differentials, with no

ratio tliat is dejinite, i. e., independent of the values of the differentials

themselves.

In a calculus in which the derivative is the prime quantity, the differ-

ential notation creates numerous iirtijk-i<d difficulties which would be elim-

inated by a proper derivative notation; but this would limit the scope of

the calculus and alter many of its time-honored developments. Nor is it

necessary to make a change of notation, because the present notation is

made completely significant by Newton's definition.

"Wlien we consider the weight that attaches to the name of Newton, it

would seem that his views on the calculus were worthy of being considered,

even today. When we add that he is the original inventor, and that his

fundamental idea of the differential is the very one that is needed to give

the differential calculus an intelligent and rigorous mathematical basis, it

is certainlv time that he came into liis own.


