A Standard Condenser of Small Capacity.

> By R. R. Ramset.

In radioactive measurements of substances which are very feebly radioactive it is necessary to have an electroscope whech is very sensitive. One of the conditions to obtain this result is, the electroscope must have a very small capacity. A capacity of one to ten centimeters. A sphere has a caparity equal to its radius when far removed from other objects but when brought near to the electroscope its capacity changes to a value which depends upon the position, size and shape of the electroscope.

It is customary to use a erlindrical condenser. The capacity of a cylindrical condenser is

$$
\mathrm{C}=\frac{\mathrm{L}}{2 \log _{\mathrm{e}} \mathrm{R}_{1} \mathrm{R}_{2}}
$$

where C is the capacity; L is the length; R_{1} is the inside radius of the outside cerlinder; R_{2} is the radius of the inside ersinder. This formula gives the capacity if the effect of the ends call be neglected. This requires that the length should be great compared to the difference of the two radii. When these conditions are met the capacity will be 100 cm . or more.

In order to correct for the end effects 1 have made a condenser in three sections, the construction of which is illustrated in the eross sectional drawing. The middle eylinder is made of a brass rod about 9 millimeters in diameter. The outside eslinder is made of hrass tubing whose inside diameter is about $3 . f$ c.m. The diameters are ehosen large in order that the aceuracy of measurement may be great. The ratio of the diameters is made large in order that the caparity per unit length may be small.

The length of the end seetions is 10 cm . The length of the middle seretion is 20 cm. The middle roel is held in place in the end seetions by means of sulphur. This was accomplished by means of two wooden dises which were, aceurately turned to fit in the ends of the large esplinder and hold the middle. rod in the center. These dises were placed in the ends of the end sections. The end seetion was stood upon the outside end and melted sulphur was poured through a hole in the top dise until the exlinder was about one-third filled. The dises were removed after the sulphur had hardened. Dowel pins are plated on the midde rod to hold the middle section in place.
Standard Condenser.

The rapacity of the middle section is calculated by the formula. The electroseope is charged to a potential V_{1}. The charge on the electroseope is divided with the condenser, all sertions being used.

If C_{1} is the capacity of the electroscope. C_{2} is the capacity of the end sections. C_{3} is the capacity of the middle section. V_{1} is the initial potential. V_{2} is the final potential.
then since

$$
\begin{aligned}
& Q=C_{1} V_{1}=\left(C_{1}+C_{2}+C_{3}\right) V_{2} \\
& V_{1} / V_{2}=\left(C_{1}+C_{2}+C_{3}\right) / C_{1}=r_{1}
\end{aligned}
$$

The electroscope is again charged to a potential V_{1}. The charge is again divided with the condenser, the end setetions being used.

Then we have

$$
V_{1}^{\prime} / V_{2}^{\prime}=\left(C_{1}+C_{2}\right) / C_{1}=r_{2}
$$

combining the two equations involving r_{1} and r_{2} we get

$$
C_{1}=C_{3} /\left(r_{1}-r_{2}\right)
$$

In case that one has a steady ionization carrent as in the case of radium emanation in an cmanation clectroseope alter there or four hours, one cam allow the dectroscope to discharge through at certain potential difference, dV, first with the chectroscoper alone, then with the ends of the eondenser eonneeterl to the elsectroseope, and then with the entive condenser connected. Sinee $\mathrm{i}=\mathrm{C} d \mathrm{~d} / \mathrm{t}$ and dV is constant, we have,

$$
\left(C_{1} / 1_{1}=\left(C_{1}+C_{2}\right) / t_{2}=\left(C_{1}+C_{2}+C_{3}\right) / t_{3}=\left(C_{3} /\left(t_{3}-t_{2}\right)\right.\right.
$$

(are must be taken to see that the eurrent is constant during the whervations. If the emrent is due 16β or x rays there is danger of the air inside of the eondenser being ionized and thus producing a variable current.

The capaceity of the middle sertion of the rondenser which I have is s.06; ©m. The raparity of the oud sedtons is found by experiment to be about 17 cm . Thus, sinee the combined lengith of the ends is the same as the middle seertion, the end effecets phas the dieferetrie effee of the sulphur is about 9 (rm.

Department of Physics, ludianal University, Derember 1, 1915.

