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ABSTRACT. Wind turbines pose threats to bats due to the risk of collisions, barotrauma, habitat loss, and
environmental changes. To assess potential conflicts between wind energy development and the summer
habitat of the eastern red bat (Lasiurus borealis) in Indiana, we used a species distribution modeling approach
(MaxEnt) to generate two predictive models. We created a model representing areas with the potential for
future wind energy development based on six environmental characteristics along with the locations of wind
turbines. To create models of habitat suitability for summer resident eastern red bats, we used detections of
eastern red bats collected via mobile acoustic surveys. We modeled these with 20 environmental variables that
characterize potentially suitable eastern red bat summer habitat. Wind power at a height of 50 m, wind speed
at a height of 100 m, and land cover type were the most influential predictors of wind energy development.
Proportion of forest within 500 m and 1 km and forest edge within 5 km were the most important variables for
predicting suitable summer habitat for red bats. Overlaid maps revealed that approximately three-quarters of
the state was unsuitable for both wind development and red bats. Less than 1% of the state showed areas
suitable for both wind development and red bats, which made up an area of about 4 km2. Primarily, these
were rural areas where cropland was adjacent to forest patches. Predicting areas with potential conflicts can
be an invaluable source for reducing impacts of wind energy development on resident red bats.
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INTRODUCTION

Understanding habitat preferences of a spe-
cies can be important for assessing potential
ecological impacts of large-scale developments,
such as the establishment of wind energy
facilities (Roscioni et al. 2013; Santos et al.
2013). The installation of wind turbines can
result in environmental costs, including habitat
fragmentation, habitat loss (Larsen & Madsen
2000), and the direct threat to wildlife through
collisions with turbine blades (Arnett & Baer-
wald 2013) and barotrauma (Baerwald et al.
2008). In particular, concerns for birds and bats
have increased due to high mortality rates

reported at wind energy facilities (Orloff &
Flannery 1992; Barrios&Rodrı́guez 2004;Kunz
et al. 2007). Both the placement of wind turbines
and the habitat selected by wildlife depend on
environmental and geographic variables (Lim-
pert et al. 2007;Brower et al. 2010;Roscioni et al.
2013). As such, understanding the conditions
needed for both imperiled species and high
quality wind energy may allow us to identify
areaswhere development poses a risk to a species
and its habitat. Such understanding can aid in
setting conservation priorities and managing
wind energy development.

Thewind energy sector is an emerging threat to
eastern red bats (Lasiurus borealis), henceforth
referred to as red bats (Johnson et al. 2004; Kunz
et al. 2007; Arnett & Baerwald 2013). This is a
migratory, relatively common, and widely dis-
tributed foliage-roosting bat in North America
(Shump & Shump 1982; Cryan 2003). However,
the red bat is one of the few species most

1 Corresponding author: Department of Natural
Resource Ecology and Management, Iowa State
University, Ames, IA 50011, rvanausd@iastate.
edu, 765-894-2288.
2 Current address: Saint Mary’s University of
Minnesota, Winona, Minnesota, 44987 USA.

57



frequently killed by wind turbines (Johnson et al.
2003; Kunz et al. 2007; Arnett et al. 2008) and is a
state-listed species of special concern in Indiana
(Whitaker &Mumford 2009; IDFW 2015).

Redbats are considered tobedeclining inmany
parts of their range (Winhold et al. 2008).
Although fatality rates are highest during fall
migration, they also occur throughout the entire
summer (Arnett & Baerwald 2013; Foo et al.
2017). Currently, Indiana has 1,203wind turbines
in operation with wind energy development
expected to increase (AWEA 2018). To reduce
the detrimental effects wind turbines have on this
species, an accurate understanding of the poten-
tial for conflict between red bats and present and
future wind energy development is critical.

The red bat is often associated with hardwood,
and occasionally, coniferous, forests and use
water sources, such as streams, for foraging,
drinking, and traveling (Hutchinson & Lacki
1999; Jung et al. 1999; Limpert et al. 2007). Their
roosts are found in forests with varying degrees of
tree density but most often occur in low to
moderately dense forests (Hutchinson & Lacki
2000; Elmore et al. 2005; Limpert et al. 2007).
Furthermore, red bats often forage along forest
edges (Krusic et al. 1996; Mager & Nelson 2001;
Morris et al. 2010). Although developed areas are
not a preferred habitat, theywill utilize such areas
for foraging (Furlonger et al. 1986; Mager &
Nelson 2001; Walters et al. 2007). Red bats have
been known to forage over 5 km from a roost site
in a single night (Hutchinson&Lacki 1999).With
the ability to fly long distances, bats likely select
habitat in a hierarchical manner (Johnson 1980;
Limpert et al. 2007). Thus, it is important to
consider habitat preferences of red bats at several
scales, such as the scale at which they consider
optimal foraging habitat (Limpert et al. 2007).

Species distribution models (SDMs) are useful
tools for quantifying suitable habitat for wildlife.
MaxEnt is an SDM tool that combines presence-
only data with a set of environmental features
within a geographic spatial grid and uses ma-
chine-learning to predict the potential distribu-
tion and/or habitat of a species (Phillips et al.
2006; Merow et al. 2013; Elith et al. 2011). This
method has been used for several organisms,
including bats (Rebelo & Jones 2010; Razgour et
al. 2011). Because of their nocturnal behavior bats
can be difficult to survey, so absence datamay not
be reliable or accurate (Hirzel et al. 2006; Rebelo
& Jones 2010). Thus MaxEnt, with its use of

presence-only data, offers an efficient and valu-
able solution for creating SDMs for bats.

The goal for this study was to determine the
potential for habitat conflict between summer
resident red bats and wind turbines in Indiana.
Our objectives were to examine the presence
locationsof resident redbatsandknown locations
of wind turbines, along with environmental
variables that influence red bat habitat and wind
energydevelopment selection, to (1) identify those
variables that most influence suitability for both
red bats and wind energy; (2) identify habitats
with a high probability of suitability for this
species and for wind energy development; and (3)
use bat and wind energy suitability maps to
quantify areasof potential conflict bygenerating a
map of low conflict and high conflict areas.

METHODS

Study area.—Our field sites consisted of 17
areas in Indiana, the majority occurring in and
around state forests. Thirteen of these publicly
managed regions occurred within 8 km of an
Indiana state forest, one occurred within the
Indiana Dunes National Lakeshore, and three
were rural areas in east-central Indiana being
sampled for another project. The dominant
forest types of these areas include oak-hickory,
beech-maple, mixed hardwood, and pine (Shao
et al. 2014). Forests of white oak (Quercus
alba), red oak (Q. rubra), chestnut oak (Q.
montana), and hickories (Carya spp.) were
predominate (Shao et al. 2014). Study areas
were chosen in order to incorporate much of
the area that red bats in Indiana were expected
to use, which included agricultural, forested,
and developed areas (Cryan 2003; Limpert et
al. 2007; Walters et al. 2007). These sites were
used to obtain red bat presence data, but our
modeling study area consisted of the entire
state of Indiana.

MaxEnt Species Distribution Modeling Soft-

ware.—Several SDMs require information on
the presence and absence of a species. However,
absence data can be difficult to obtain for some
species and false absences may bias model
results (Hirzel et al. 2006). So, rather than
comparing presence data to absence data,
MaxEnt contrasts presence data and back-
ground data (Phillips et al. 2009). Background
data is the set of conditions where the focal
species could have been found based upon the
survey technique (Phillips et al. 2009). MaxEnt
randomly samples the area containing the
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background data (creating pseudo-absences)
and contrasts these against the presence data
(Merow et al. 2013).

MaxEnt models utilize Area Under the Curve
(AUC) of the receiver operating characteristic to
evaluate model performance (Elith et al. 2011).
AUCmeasures the models ability to discriminate
between a random presence point and a random
absence point (or a randombackgroundpoint) on
a scale from 0 to 1; a value of 1 represents perfect
discrimination, while a value of 0.5 represents
random discrimination (Fielding & Bell 1997;
Rebelo & Jones 2010).

MaxEnt has grown in popularity for its use in
predicting species distributions since it is accurate
in its predictions and user-friendly (Merow et al.
2013). However, the predictive ability of MaxEnt
is dependent upon the quality of input data and
the satisfaction of model assumptions such as
data independence and random sampling.

Red bat presence data.—A total of 28 mobile
acoustic surveys was conducted in and in
proximity to Indiana state forests from 30
May to 7 August 2012 (Tonos et al. 2014). An
additional 19 surveys were carried out in
northwestern Indiana between 7 July and 8
August 2013 (D’Acunto et al. 2018). Each
route was surveyed once. Although fall is
generally when bat mortalities peak (Arnett &
Baerwald 2013), we chose to focus on red bats
in the summer (Britzke & Herzog 2009) because
it may be particularly informative to identify
habitat that could potentially put resident
summer bats at risk. Additionally, summer
bat surveys are easier to conduct since summer
is a broader window of time and does not
require timing of surveys to perfectly coincide
with migration. Surveys traversed all major
cover types in the region (agriculture, forests,
developed areas, open water) and occurred
throughout Indiana, including in some of the
same general areas as the wind turbines.

Ultrasonic echolocation calls of bats were
recorded with a microphone mounted to the roof
of a vehicle connected to an Anabat SD2 (Titley
Scientific, Inc., Ballina, NSW, Australia) and an
iPAQ Personal Digital Assistant (PDA; Hewlett-
Packard Company, Palo Alto, CA; Britzke &
Herzog 2009). The length of the routes ranged
between 16.1 and 51.2 km (mean¼39.4 km, SD¼
10.6 km). Each route was driven at a consistent
speed between 24–32 kph. The locations of
recordings were registered using a CompactFlash
SiRF STAR III Global Positioning System

(GlobalSat, New Taipei City, Taiwan). To
maximize likelihood of red bat identification,
surveys began 20 min after sunset when the
temperaturewas at least 12.88C, therewas little to
no chance of rain, and wind speeds were
forecasted to be less than 24 kph.

The automated acoustic bat identification
software, EchoClass (v2), was used to identify
red bats from echolocation call files, and thus
obtain presence locations. Echolocation call files
were identifiedusing ‘‘Species Set 2’’ inEchoClass,
which includes a suite of nine species to which the
calls can be identified, i.e., big brown bats
(Eptesicus fuscus), silver-haired bats (Lasionycte-
ris noctivagans), red bats, hoary bats (Lasiurus
cinereus), eastern small-footedbats (Myotis leibii),
little brown bats (M. lucifugus), northern long-
eared bats (M. septentrionalis), Indiana bats (M.
sodalis), and tricolored bats (Perimyotis subfla-
vus). These are the most commonly encountered
species in our study area throughout the summer.
Classification accuracy of these species often
exceeds 90% from call libraries, though field
recordings are expected to introduce more poten-
tial for misidentification (Britzke et al. 2002,
2011). Given a particular call, the species identi-
fied by the program is referred to as the
‘‘prominent species’’. If another bat is present,
that species is the second prominent species. Files
that identified redbats as the prominent species or
those that classified the red bat as the secondmost
prominent species when the first prominent
species was unknown were included in our
presence data.

Red bat environmental variables.—For the
habitat suitability model of red bats, five major
feature types were selected following Weber &
Sparks (2013), i.e., proportion of forest, pro-
portion of area with forest edge, proportion of
area with streams in forest, length of streams,
and proportion of developed area. These
variables are relatively consistent throughout
the study area and represent habitat over a long
time period. All maps were created in ArcMap
10.2.2 (Environmental Systems Research Insti-
tute, Inc., Redlands, CA). Focal statistics was
used to calculate the proportion of each cover
type within circular plots at four spatial scales:
500 m, 1 km, 3 km, and 5 km. Red bats have
been observed foraging 5 km away from their
roost sites (Hutchinson & Lacki 1999) and was
considered the maximum area they could
explore when selecting habitat. Variables relat-
ing to forest, forest edge, and developed area
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were calculated using the U.S. Geological
Survey’s 2006 National Land Cover Database
(Xian et al. 2011). Forest edge was identified as
forested raster cells adjacent to non-forested
areas (e.g., hay/pasture, cultivated crops, wa-
ter, developed areas with open space). In order
to calculate stream lengths, the number of
stream raster cells within circular plots at each
scale was determined and we assumed that any
cell designated as a stream constituted a stream
length of 30 m (due to raster cells being 303 30
m). Stream variables were based on maps
created from the U.S. Geological Survey
National Hydrography Dataset (intermittent
code 46003; perennial code 46003 and 55800;
nhd.usgs.gov). Because our sampling effort was
concentrated along country roads, we only
included high–intensity and moderate–intensity
areas of development for our proportion of
developed area variable so as not to impose
bias based upon our sampling along low–
intensity developed roads. Cells of all raster
maps were 30 3 30 m.

Wind presence data.—For locations of cur-
rent and developing wind turbines, we obtained
archives generated by the Federal Aviation
Administration (FAA). Turbines and meteoro-
logical towers that were determined to be ‘‘no
hazards’’ to air navigation by the FAA between
2008 and 2013 were selected because these serve
as the best representation of where turbines are
located in Indiana (GEC 2005). Meteorological
towers are used to gather on-site environmental
data, including wind parameters, near a poten-
tial wind energy facility and assess the wind
resource availability for wind energy sites
(Brower et al. 2010). These sites were included
as presence data in the model. Any turbine
categorized as a ‘‘work in progress’’ also was
included since the environmental characteris-
tics of these proposed wind turbine locations
were considered to be informative of future
development. A number of large-scale wind
energy projects are situated in northwestern
Indiana and compose the majority of the wind
turbines in the state (GEC 2005).

Wind environmental variables.—For wind
energy development potential, variables that
are considered to influence wind resource
potential or wind turbine construction were
chosen (Bailey et al. 1997; Brower et al. 2010;
Copeland et al. 2013; Pocewicz et al. 2013;
Petrov & Wessling 2015). Variables included
wind power in watts (W/m2) at a height of 50 m

and 100 m, wind speed (m/s) at a height of 50 m
and 100 m, percent slope, and land cover. The
wind resource maps were produced by the
Mesoscale Atmospheric Simulation System and
WindMap (TrueWind Solutions). The NLCD
served as the basis for our land cover data.
Percent slope was calculated using elevation
data from the U.S. Geological Survey’s Na-
tional Map Viewer and the slope tool on
ArcMap 10.2.2.

Spatial autocorrelation.—MaxEnt assumes
that the presence data input into the software
is independent and free from spatial autocor-
relation (Merow et al. 2013). Therefore, a
random distribution of occurrence data should
be utilized within MaxEnt. Failure to account
for spatial autocorrelation would introduce
error into the model that may affect the model
performance and result in overfitting and errors
in prediction (Elith et al. 2011; Merow et al.
2013). As stated below, to alleviate some of the
spatial autocorrelation in the wind turbine
data, we randomly selected data for model
training, while the rest were used for model
evaluation (Pocewicz et al. 2013). However, the
wind turbine data in this study represents a
census, rather than a sample, of all wind
turbines within the state of Indiana. Thus,
any bias revealed is intrinsic to the entire wind
turbine ‘‘population’’ and should be included in
the model without modification to produce
accurate predictions.

Sampling bias.—MaxEnt models assume
that every point within a landscape has an
equal chance of being sampled (Merow et al.
2013). However, sampling along roads violates
this assumption, thus, giving rise to sampling
bias (Reddy & Dávalos 2003; Merow et al.
2013). If such bias is not accounted for, the
model’s output may only represent the survey
effort and/or intensity rather than the species’
actual distribution (Phillips et al. 2009; Merow
et al. 2013). To account for this bias, it is
necessary that the background data be drawn
from the area actually sampled (Phillips et al.
2009). Because our acoustic surveys took place
along roads, our sampling area was considered
to be all locations located within a 30 m buffer
area along all routes surveyed, representing the
sampling limits of our acoustic detectors.
Similarly, the placement of wind turbines is
not random. Therefore, we considered only the
counties in Indiana in which turbines were
located based on the FAA archived data to be
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the sampling area for background data, includ-
ing counties with ‘‘work in progress’’.

Model selection.—MaxEnt utilizes a user-
adjustable regularization parameter to con-
strain model complexity (Phillips et al. 2006;
Warren & Siefert 2011; Merow et al. 2013).
Comparison of models with various regulari-
zation values provides a method to determine
the model that best balances model fit and
complexity (Warren & Seifert 2011). For this
study, ten models were created with varying
regularization values (1, 3, 5, 7, 9, 11, 13, 15,
17, and 19) in MaxEnt 3.3.3k (Phillips et al.
2006) using red bat and wind development
datasets and their respective environmental
variables following the methods outlined by
Warren & Siefert (2011). Results from each set
of models were compared using ENMTools
1.4.4 (Warren et al. 2008). The model with the
lowest AICc value was chosen for both red bats
and wind turbines with the corresponding
regularization value for each ‘‘best’’ model
used for the empirical models.

Empirical models.—Empirical models for
both red bats and wind energy development
were run in MaxEnt using the appropriate
regularization value obtained from the model
selection method outlined above. Duplicate
presence records in the same grid cell were
removed within MaxEnt in order to prevent
further autocorrelation (Diniz-Filho et al.
2003). Five red bat presence records were
removed within MaxEnt for occupying the
same grid cell, thus 450 red bat presence
records were used for MaxEnt modeling – 315
for model training, 135 for model evaluation.
All 1678 wind turbine records were used for
MaxEnt modeling – 1,175 for model training
and 503 for model evaluation. For each model,
70% of total presence records were used for
model training and the remaining 30% were
withheld for model evaluation. Background
data for both red bats and wind turbines
consisted of 10,000 points randomly distributed
throughout the respective sampling areas.
From our MaxEnt models we obtained raw
output representations depicting relative occur-
rence probabilities for red bat habitats and
wind energy development potential.

Both models had greater than 455 presence
records, and this sample size allows MaxEnt to
create complex response curves, or features, for
the environmental variables (i.e., linear, quadrat-
ic, product, hinge, and threshold). In our case,

MaxEnt utilized all features (linear, quadratic,
hinge, product, and threshold) because of our
large number of presence records (Elith et al.
2011; Merow et al. 2013).

MaxEnt null models.—AUC is the most
popular predictor used in the literature to
assess model accuracy of presence-only data
in MaxEnt (Merow et al. 2013; Raes & ter
Steege 2007). However, the use of background
data (acting as pseudo-absences) decreases the
maximum achievable AUC value to less than
1.0 and it is not always possible to determine
based upon this value alone if a model
contributes significantly to predicting suitable
habitat (Raes & ter Steege 2007; Phillips et al.
2006). Therefore, it is necessary to assess
whether the AUC value of a model significantly
differs from that expected by chance through
comparison to null models with AUC values
from models created using randomly distribut-
ed presence locations (Raes & ter Steege 2007).
Null models for both red bats and wind
turbines were created by generating 500 sets
of random locations (each set representing the
same number of presence locations from
original models) within each sampling area
(Raes & ter Steege 2007). Each set of presence
data for the null models was processed in
MaxEnt utilizing the exact same parameters
used for each empirical model. The AUC value
for each empirical model was then compared to
the distribution of AUC values of the corre-
sponding null-model to determine whether the
discrimination power of the empirical model
was significantly greater than random.

Conflict potential.—Based on the best model,
MaxEnt provides a map for both the red bat
and wind energy models. Each cell within the
maps is given a value that represents the
relative probability of suitability for either red
bats or wind energy. Each map was classified
into distinct suitability categories using the
maximum sum of sensitivity and specificity
(max SSS) for each model as a threshold (Liu et
al. 2005). Values above this threshold in each
model were considered ‘suitable’ while values
below this threshold were deemed ‘unsuitable.’
To quantify the potential for conflict between
suitable red bat habitat and wind energy
development potential, these maps were over-
laid and the amount of area for each possible
combination of suitability levels from both
maps was determined. For each of these
groups, the area and the percentage of each
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group present was calculated. All map manip-
ulations were conducted in ArcMap 10.2.2.

RESULTS

Presence data.—A total of 4,649 echoloca-
tion calls was obtained from 47 surveys
conducted across the state of Indiana. Figure
1 shows the 455 echolocation calls identified by
EchoClass (v2) as red bats. Because red bats
were relatively common, this map closely
resembles the entire area surveyed. Spatial
autocorrelation analysis resulted in a calculated
ANN value of 639.58 m. When compared to
the 500 null models created, the ANN of red
bat occurrences showed no difference from
random (p ¼ 0.058), thus occurrences were
considered independent and free from spatial
autocorrelation. In addition 1678 wind turbine
records were obtained (Fig. 1).

Empirical models.—The optimum model for
red bats had the lowest AICc and a regulari-
zation parameter multiplier value of 3. The

southern portion of the state had the highest
predicted suitability for red bats (Fig. 2a). The
training AUC for the red bat model was 0.705,
while the AUC for the evaluation data set was
0.615 (SD ¼ 0.025) with a max AUC of 0.671
(maximum AUC is calculated based on using
total MaxEnt distribution and, in practice,
training and evaluation AUC values may
exceed this maximum; Philips et al. 2006).
AUC values were significantly greater than
those of null models (p , 0.002). The variables
that contributed the most to the predicted
suitability of this model were proportion of
forest within 500 m, proportion of area with
forest edge within 5 km, and proportion of
forest within 1 km. The first two variables
showed a strong positive effect on suitability
while the final variable showed a strong
negative effect on suitability (Fig. 3). It should
be noted that the response curves of covariates
assume all other environmental variables are
held at mean values (Table 1). Thus, the
seemingly contradictory results of optimal
habitat suitability with complete forest cover
within 500 m but no forest within 1 km is
neither possible nor the actual conclusion of
the model.

The optimummodel for wind turbines had the
lowest AICc and a regularization parameter
multiplier value of 3. The predicted suitability
for wind energy occurred mostly in the central
portion of the state (Fig. 2b). The training AUC
for thewind energy developmentmodelwas 0.896
and the evaluation AUC was 0.890 (SD¼ 0.006)
with amaximumAUCof 0.883.AUCvalueswere
significantlygreater than thoseofnullmodels (p,

0.002). The highest contributing variables were
wind power at 50 m, land cover type, and wind
speed at 100 m/s. Suitability peaked around 300
W/m2 for wind power at 50 m and showed a
strong positive effect between approximately 250
W/m2 and this peak (Fig. 4a). Above 300 W/m2,
suitability dropped dramatically. Wind speed at
100 m showed a strong positive effect approxi-
mately between 8.0 m/s and 8.6 m/s with
suitability plateauing at greater wind speed (Fig.
4b). Land cover types were treated categorically.
The most positively associated land cover types
were ‘‘cultivated crops’’ and ‘‘hay/pasture’’ (Fig.
4c).

Conflict potential.—For red bat and wind
turbine suitability maps, max SSS threshold
values of 37.26 and 14.15, respectively, were
used to categorize each map into suitable and

Figure 1.—Presence records of the eastern red bat
(black circles) and wind turbines (gray squares) in
Indiana, USA.
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unsuitable regions. When maps were overlain,
the majority of the state exhibited a low conflict
potential between wind energy development
potential and suitable red bat habitat (Fig. 5).
Approximately 73.8% of the state was unsuit-
able for both wind energy development and red
bats (Table 2), constituting an area of about
69,554 km2. The majority of the remaining
areas were regions with suitable habitat for
either wind energy development or red bats,
but not both. Less than 1% of the entire state
represented areas suitable for both wind
turbine development and red bats. The areas
of high conflict were located in the northwest-
ern and west-central portions of the state and
comprised approximately 4 km2. Areas where
cropland is adjacent to deciduous forest patch-
es dominate much of the conflict. This is
particularly evident in rural areas (i.e., areas
not highly or moderately developed). A portion
of the area along Lake Michigan, where there is
a high density of forest, also revealed a high

conflict potential. This area has a relatively
high wind power (. 250 W/m2) at 50 m, as
well.

DISCUSSION

With a rapidly changing landscape, identifying
areas that may support potentially threatened
species but that may put such species at risk from
human development is of upmost importance
(Manel et al. 2001; Roscioni et al. 2013; Santos et
al. 2013).Windenergyhas thepotential toprovide
a sizable portion of Indiana’s energy needs
(AWEA 2018), but establishing a coexistence of
this clean energy source and maintaining habitat
for wildlife populations is a growingmanagement
concern (Baerwald & Barclay 2009; Arnett &
Baerwald 2013). Due to their ecological impor-
tance as consumers of insects (Boyles et al. 2011),
temperate bats are of particular concern (Mickle-
burgh et al. 2002). Additionally, bats are long-
lived and have relatively low reproductive rates
(Barclay&Harder 2003), so the effect of fatalities

Figure 2.—Raw output maps showing (A) red bat habitat suitability and (B) wind development habitat
suitability. For both maps, lighter colored areas, or areas with a greater value, represent greater suitability.
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due to wind energy development may have a
disproportionate impact on bat populations.
Quantifying the potential for conflict between
wind energy development and wildlife may be an
efficient way to reduce bat mortality from wind
energy development (Roscioni et al. 2013; Santos
et al. 2013). Models produced by SDMs have the
potential to be useful tools aiding in the siting of
wind energy facilities in areas to reduce the risk of
bat fatalities (Roscioni et al. 2013; Santos et al.
2013.)

While MaxEnt has been shown to produce
reliable and informativemodels, several criticisms
of presence-onlymodeling exist (Royle et al. 2012;
Yackulic et al. 2013). Particularly, it is important
to emphasize that the results from this study
provide only an index of relative habitat suitabil-
ity and not quantitative estimates of occupancy.
Additionally, while the detection probability of
red bats was not directly measured, we acknowl-
edge that detection probability may have varied
throughout the sampled areas (Yackulic et al.
2013). For example, differences in structural
complexity near or above the roads used to survey
bats may have affected the ability of the acoustic
detectors to identify bats at various intervals
along the road (Patriquin et al. 2003;Broders et al.
2004; Yates & Muzika 2006). In addition, while
the sampling area of this study was considered to
be within a 30 m buffer area along roads, our
models predicted suitability across the entire state
of Indiana. Although the sampling area repre-
sents much of the state of Indiana, this should be
taken into consideration when interpreting re-
sults.

Red bat suitability models.—While previous
studies have investigated habitat selection of
red bats, our red bat model estimates the
potential for suitable habitat by quantifying
features of the habitat and projecting those
predictions across a broad area. Furthermore,
this model represents nocturnal activity of
resident red bats. The habitat needs of foraging
red bats may be very different from roosting
red bats (Pauli et al. 2015), and these needs
likely differ between resident and migrant red
bats. The three most important variables for
the red bat model were the proportion of forest
within 500 m, forest edge within 5 km, and the
proportion of forest within 1 km. The propor-
tion of forest within 500 m showed a positive
relationship with suitability across Indiana.
Forest edges within 5 km also had a positive
relationship with suitability, but forest within 1

Figure 3.—The response curves of the top three
most influential variables on the red bat model. The
trend line represents how habitat suitability varies as
the following variables change while all other
variables are kept constant: (A) proportion of forest
within 500 m, (B) proportion of forest edge within 5
km, and (C) proportion of forest within 1 km.
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km was a negative relationship. Forest edges

can be particularly important to foraging red

bats and other insectivorous bats (Mager &

Nelson 2001; Law & Chidel 2002; Morris et al.

2010), but too much ‘‘clutter’’ (i.e., obstacles)

within the foraging area may impede flight and

echolocation (Fenton 1990; Elmore et al. 2005).

This suggests that although forests, particularly

forest edges or openings within forest, may be

important for roosting, traveling, and some

foraging opportunities within a small spatial

scale, contiguous forests at a scale of 1 km may

not provide optimal foraging habitat. Southern

Indiana is composed of relatively intact forests

(Jenkins 2012), and forest edges likely provide

highly used foraging and traveling habitats.

While our model had somewhat low AUC
values (Swets 1988; Araujo & Guisan 2006),
comparisons with null models show that the
potential to provide valuable information on the
habitat preferences of red bats is significant (Raes
& ter Steege 2007). However, the ability of our
model to correctly discriminate between a pres-
ence location and a random site, based on AUC
values, is still rather low. This could be explained
by the fact that species with a broad geographic
range and generalized habitat preferences provide
models of relatively low predictive power (Kad-
mon et al. 2003; Hernandez et al. 2006). Red bats
appear to be habitat generalists with an ability to
use a variety of habitat types (Furlonger et al.
1986; Elmore et al. 2005; Ford et al. 2005).
Furthermore, modeling nocturnal activity com-
bines both foraging and commuting detections.
This aggregation of locations that bats might
select for different activities may dilute some of
the precision of habitat selection models. Addi-
tionally, the lower AUC of the evaluation data
compared to the training data may indicate that
overfittingoccurred, even thoughweattempted to
account for overfitting (Merckx et al. 2011;
Warren & Seifert 2011). Nonetheless, this model
is valuable as amethod for delineating areas likely
to be favored by red bats in Indiana.

Wind development models.—In contrast to
the habitat preferred by foraging red bats, sites
suitable for wind energy development in
Indiana are generally in very open habitats
with flat terrain. The main consideration when
assessing areas for wind energy development is
wind resource availability (Brower et al. 2010).
Two factors that greatly influencing wind
resource availability are wind power and wind
speed. Our model indicated that wind power at
50 m and wind speed at 100 m were the most
influential variables predicting suitable areas
for wind development. Generally, wind power
greater than 400 W/m2 and wind speed greater
than 7.0 m/s at 50 m is suitable for most wind
development applications (Bailey et al. 1997).
Our results indicated that wind power at 50 m
peaked around 300 W/m2 (Fig. 4a) correspond-
ing to the minimum requirement. Although our
results represent wind speed at 100 m, the wind
speed minimum requirement at 50 m can be
extrapolated to this height using a form of the
power function (Bailey et al. 1997) that
accounts for wind shear at varying heights.
The resulting extrapolated minimum value for
wind speed at a height of 100 m is 7.1 m/s. Our

Table 1.—Mean values of predictor variables at
sample locations used for the red bat habitat
suitability model and wind energy development
model. Generating the response curves from the
MaxEnt models involved setting all variables, except
for the variable of interest, to this constant mean
value. The most common landcover type, which was
used in the wind energy development model, was
cultivated crops.

Predictor variable Mean

Red bat
model

Forest edge (%) 500 m 19.15

1 km 13.27
3 km 12.77
5 km 13.03

Forest (%) 500 m 68.51
1 km 68.64
3 km 66.32
5 km 61.36

Developed area (%) 500 m 0.10
1 km 0.11
3 km 0.19
5 km 0.27

Streams in forest (%) 500 m 5.17
1 km 5.08
3 km 4.75
5 km 4.48

Stream length (m) 500 m 47.28
1 km 196.61
3 km 1727.12
5 km 4649.54

Wind energy
model

Wind power
(watts per m2)

50 m 300.75

100 m 470.94
Wind speed (m/s) 50 m 6.68

100 m 7.75
Slope (%) - 1.10
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results indicated that wind speed at 100 m
plateaus at 8.6 m/s and greater (Fig. 4b)
exceeding this minimum requirement.

Land cover typewas also an important variable
in predicting suitable wind energy development
areas. In particular, cultivated crops and hay/
pasture had the most influence on suitability than
any other cover type. Indeed, most of the utility-
scale wind farms currently in operation are
located in agricultural, grassland, and desert
habitats (Kunz et al. 2007; Arnett et al. 2008;
Denholm et al. 2009).

For these two factors our results coincide with
the industry standards used to assess areas for

Figure 4.—The response curves of the top three
most influential variables on the wind energy devel-
opment model. The trend line represents how habitat
suitability varies as the following variables change
while all other variables are kept constant: (A) wind
power (W/m2) at 50 m, (B) wind speed (m/s)

Figure 5.—A representation of the conflict poten-
tial between habitat suitability for the red bat and
wind energy development describing areas that are
unsuitable for both, suitable for one, or suitable for
both. The three insets are included to make areas of
conflict visible. They contain 57% of the identified
areas of conflict on the map.

 
at 100 m (note the different scale used for y-axis), and
(C) land cover type [OW ¼ open water, DO ¼
developed open space, DL¼ developed low intensity,
DM¼ developed medium intensity, DH¼ developed
high intensity, BL ¼ barren land, DF ¼ deciduous
forest, EF¼ evergreen forest, MF¼mixed forest, SS¼
shrub/scrub, GH ¼ grassland/herbaceous, PH ¼
pasture/hay, CC ¼ cultivated crops, WW ¼ woody
wetlands, EHW¼ emergent herbaceous wetlands].
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wind development in Indiana and otherMidwest-
ern states. Moreover, much of the best wind
resource availability in Indiana is located in the
northern part of the state (GEC 2005), and
supported by our results

Compared to the predictive power of our red
bat model, our wind model showed better
predictive power overall (Swets 1988; Raes & ter
Steeg 2007), indicating that it is likely sufficient for
identifying suitable wind energy development
locations within this region based on the given
environmental variables and parameters (Pearce
& Ferrier 2000). While using SDMs to predict
potential development byhumans is in its infancy,
it has great potential for the prediction of future
wind energy developments (Pocewicz et al. 2013;
Petrov &Wessling 2015).

Potential conflict.—Our conflict potential
map represents an alternative to assessing wind
energy impacts on bats during siting analyses
conducted before construction of facilities
begins (Roscioni et al. 2013; Santos et al.
2013). Modeling future anthropogenic devel-
opment to determine possible impacts on
wildlife can be a useful and relatively quick
approach to identifying conflicts (Copeland et
al. 2013; Pocewicz et al. 2013). With such
contrasting habitat requirements, it was not
unexpected that there would be little conflict
for suitable locations between bats and wind
turbines in the state. Our conflict analysis did
show a low potential for conflict between
suitable summer habitat for red bats and
suitable habitat for wind energy development
in Indiana. Presumably, this indicates that
summer resident red bats are not likely to
occur where wind turbines might be present.
However, a small proportion of the state
showed a high potential for conflict, particu-
larly in areas where large-scale wind energy
projects already exist, and of potential concern

is the influence these and future wind projects
may have on bats.

For this study, several variables seemed tobe of
particular influenceonhigh conflict potential.The
presence of high conflict areas showed a pattern
along areas where rural habitat (i.e., cultivated
crops and hay/pasture fields) was adjacent to
forest. Red bats readily utilize forest edge and
open areas for foraging (Mager & Nelson 2001;
Walters et al. 2007; Morris et al. 2010), yet as the
distance from edge or forests increases foraging
activity decrease (Johnson et al. 2004). Red bats
have been observed foraging over agricultural
lands (Walters et al. 2007), but generally, when
foraging over terrestrial habitat, they prefer
foraging over or near areas with some degree of
woody vegetation (Furlonger et al. 1986; Hart et
al. 1993). At a wind energy facility in Minnesota,
Johnson et al. (2003) observed that themajority of
bat activity recorded at wind turbines was located
at turbines near woodlands. In our case, the wind
turbines surveyed are located within rural areas
with flat and relatively non-forested terrain.
Nevertheless, this pattern of high suitability for
wind development in these areas where agricul-
tural fields meet forest edges suggests that wind
development could potentially be problematic to
foraging bats.

In summary, there is little risk for resident red
bats at current wind energy facilities in Indiana
except where high quality foraging habitat is
situated near wind energy facilities. Because there
appears to be little foraging opportunity for bats
at wind energy facilities within farmland, conflict
may not be great.Nonetheless, ourmodel showed
that there is a potential of conflict in areas where
forest edge, which can provide quality foraging
opportunities, exists near agricultural land. Thus,
perhaps the risk for resident bats would be when
they are commuting between roosts and foraging
areas (Arnett et al. 2005). Furthermore, there is
concern for migrating bats, as the peak of bat
fatalities is generally during the fall migration
period and migratory tree bats comprise a
majority of the fatalities in most regions (Arnett
& Baerwald 2013), but this warrants additional
study in Indiana. Additionally, future studies
should consider utilizing more than mobile
acoustic surveys, such as stationary acoustic
surveys, to detect bats.

Our examination of suitability models and
conflict potential using MaxEnt are tools that
may be useful for identifying areas that are
preferred by red bats but that may be susceptible

Table 2.—The area (km2) and percentage of each
combination of suitable and unsuitable cells for the
habitat suitability for red bats and the habitat
suitability for wind energy development.

Red bat
suitability

Wind energy development

Unsuitable Suitable

Unsuitable 69554 9676
(73.8%) (10.3%)

Suitable 14961 4
(15.9%) (0.004%)
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to development, particularly in states that utilize
similar habitats for wind energy development as
Indiana. With the rapid increase of wind energy
development, ameans of securing optimal habitat
for bats before the construction of future facilities
could be both economically efficient and biolog-
ically beneficial.
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