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INDUCTION AND RADIATION.

R. R. Ramsey, Indiana University

Ids
The equation H = -— cos6,

r 2

where H is the magnetic field at P, (fig. 1)

Fig. 1—Illustrating a portion of a

straight wire in which a current, I, is

flowing. The field, H, at the point, P, is

H = I(ds/r 2)cos 6. When the point, P is

a great distance from the wire and per-

pendicular to the wire, H = Ih/d 2
. The

vector potential is A = Ih/d.

I ds is an element of current length ds, r,

is the distance of the point, P, from the

element I ds, and is the angle between

the line joining P and ds and the normal

to ds, may be said to be the fundamental

equation giving the relation of current

strength to the magnetic field about the

current. From this equation we get our

definition of unit current. In speaking of

this equation we shall consider the point,

P, to be on the normal to ds, and the angle

I ds
6 = 0, so that H =

r2

is the form of the

equation. If we apply

current flowing in a circular wirethis equation to a

(fig. 2) we have I times length divided by r 2
,
or H

2xr I/r 2 or H =
of the circle.

2x I/r for the value of H at the center
Fig. 2—When the

equation H = I(ds/r-)

cos 6 is applied to a cir-

cular coil carrying a cur-

rent the field, H=2xl/r,

at the center of the coil.

J'

If P (fig. 3) is on the

line which is perpendicular

to the circle at the center

and at a distance x from the

center, then we have H =

2xr [I/(r 2 + x 2
)] (r/vWx 2

)

orH = 2xr 2 I/(r 2+x 2 )^. When
the distance is great, as

at P', then H = 2xr 2 I/x 3 =
21A/x 3

.

When the current is flowing in a straight wire of infinite length then

H = 2 I/r. If the current is flowing in a wire of finite length, which is short

compared to the distance x, then H = I h/x 2 where h is the length of the wire.

"Proc. Ind. Acad. Sci., vol. 37, 1927 (1928)."

Fig. 3—When the field is calculated for a point on the

normal to the coil, H = 2xr 2I/x 3 if the distance, x, is great

compared to the radius of the coil. Or H = 2IA/x 3
.
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If we consider a circuit which carries a current to be equivalent to a

magnetic shell (Starling, p. 225), we have for the potential at a distant point

P, on the normal to the circuit (fig. 3) V = IA/x 2 = Iw, where w is the solid

angle at P' subtended by the circuit. If the current has the same effect as

the magnetic shell, then the potential at P' is V = M/d 2 where M is the magnetic
moment of the magnetic shell and d is the distance of P' from the magnetic
shell, d is the distance from the north face of the shell, or d centimeters from
the center of the magnet "end on". If we solve for the potential at a point in

the plane of the circuit which is the plane of the magnetic shell, (fig. 4) we get

V = I(o = 0. This is the same as the potential at a distance d from a short

magnet "broad side on". (Starling, p. 13). If we differentiate the first

equation with respect to the distance or with respect to x, we have

—dV ~d fe) 2M 2Io3 21

A

H = = — = = = which is the same as was derived
dx dx x 3 x x 3

above.

When the point is in the plane of the coil the potential is zero but the field

H is not zero. The field is the derivative of the potential with respect to the

direction at right angles to the distance d. At a point near the plane of the

coil (fig. 4) we have V = Iw = IA sin 6/y 2 = (IA/y2
) x/y. H = —dV/dx

= —IA/y 3
. The field in the plane of the coil is one-half that along the axis

of the coil when the distance is the same in both cases.

The value of the field H is the

field due to a current, I. This cur-

rent, I, is assumed to be direct cur-

rent. If it is alternating current we
assume that the virtual field "root

mean square" field produced by the

virtual current, I, is the same as that

produced by the direct current of the

same numerical value. It is this field

which is called induction. Thus in-

duction is the field we usually think
Fig. 4—When the point P, is in the plane of f when we speak of self-induction, of

the coil the field Is IA/y'. y, being the distance mutual induction of transformers,
of P, from the con. The potential is zero but the . ,

field is the space derivative of the potential which and ot mdliced currents,

gives H = IA/y 1
. Due to induction, energy is stored

in the field when current is increasing

and is again absorbed into the circuit when the current is decreasing. In a

pure inductive circuit with alternating current no energy is dissipated. The
current is "wattless".

If, as is sometimes done, we try to explain the action of an aerial by

assuming a perpendicular wire with a capacity such as a large ball at the top,

we can picture the magnetic field as circles about the wire and the electric

field as lines which start from the ball and curve downwards until they end

on the ground, we get a picture (fig. 5) which answers the purpose until we
try to explain the fact that the magnetic and electric fields are in phase as is

shown from Maxwell's equations. The fields about the aerial as we have

pictured them are out of phase. The magnetic field is a maximum when the
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current is a maximum and the electric field is a maximum when the charge

on the ball is a maximum, which is at a time when the current is zero and the

magnetic field is zero. This is due to the fact that in the picture we have been

thinking of the field called in-

duction and in the Maxwell
equations we are dealing with

the field called radiation.

To get the radiation we
make use of the vector poten-

tial. The line integral of the

vector potential is equal to the

surface integral of the magnetic

flux. To illustrate a line integ-

ral we will take the line integ-

ral of the electromotive force

which is equal to the surface

integral of the change of flux.

The line integral is equal to the

work done in carrying a unit

quantity around the path. Sup-

pose we have a wire bent into

a rectangular loop of a single

turn. Now potential difference

is equal to the work required

to move a unit from one point to another point. The e.m.f. in the loop is the

work required to move a unit quantity of electricity around the loop, or e.m.f. is

the line integral around the loop. Since E = —dN/dt the e.m.f., E is equal to

the rate of change of flux through the coil. The total change of flux through the

coil is equal to the surface integral of [xdH/dt taken over the surface area of the

coil. In the wire if it is a closed loop there will be an induced current flowing in

the wire. The rectangle does not need be a conductor. The rectangular circui 1

Fig. 5—An elementary picture of the fields about a

vertical antenna. The magnetic field is represented by
the circles about the antenna and the "spray" lines

represent the electric field. Our ordinary conception of

magnetic field, which is induction, has led many text

books to give wrong statements.

*+$•*

P+if^2

•X

Y
Fig. 6—The work done by carrying a unit charge of electricity around the rectangular p

equal to the potential induced by the change of the magnetic field, S, through the co
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might be made of a glass tube. The line integral may be thought of as being

the work done by pulling a unit charge through the tube by means of a

"greased" thread which had been threaded through the tube. The e.m.f.

will be equal to the rate of change of flux the same as if a conducting wire

were there. The rectangle may be an imaginary rectangle or path in space

and the flux may not be perpendicular to the face of the imaginary circuit,

and the statement that the line integral of the e.m.f. is equal to the surface

integral of the charge of magnetic flux still holds.

Imagine a rectangular path in the X Z plane whose area is dx dz (Fig. 6).

Let the magnetic field, H, have the components a, (3, y, in the x, y, and z direc-

tions respectively. Let the electric field, H, have components P, Q, R. Let

the path be represented by the square a b c d in the figure. Then the rate of

d[6

change of magnetic flux through the area will be [j.
— and the total change of

dt
d£

flux will be [j.
— dx dz. Let the component of E along the line ab be P. Then
dt

the component of E along the line dc will be that along ab plus the change in

moving a distance dz in the Z direction. This change is equal to the space

dP
rate of change, — , times the distance. Then the value of E along dc will

dz

be P + (dP/dz)dz.

The component of E along ad is R, and that along be is R + (dR/dx)dx.

Then the work done in taking our unit quantity along the path abed is Pdx —
[R + [dR/dx)dx] dz + [P + (dP/dz)dz] dx — R dz which when added and

simplified is (dP/clz — dR/dx)dx dz. Since E = —dN/dt this is equal to

dp d$
the negative of the rate of change of flux, which is —fx— dx dz, or — [i— dxdz

dt dt

= (dP/dz — dP/dx) dx dz. dx dz can be cancelled out. Going through

similar operations in the other two planes we get the two similar equations.

The three equations are:

d« dR dQ

dt dy dz

d£ dP dR

dt dz dx

dy dQ dP

dt dx dy
dH

The shorthand method of writing these equations is —\x == Curl of E
dt

Now for the line integral of a vector potential. Let A be the vector

potential with components A
x
Ay A

z
. So far we have not said what A is.

If the line integral of A is equal to the surface integral of the magnetic field we

can from the analogy of the line integral of the e.m.f. write the equation in

"shorthand",

II = Curl of A, or writing in full

dA
z

dAy

dy dz
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dz

_dAy

dx

dA^

dx

dA,

dy
If the magnetic field at P (fig. 7) is due to current in the vertical aerial at the

origin, then a = 0, ;' = 0, and $, the component parallel to the Y axis, is the

only component.

dA,
Then {i =

dz dx

2
V

?

T

X

Fig. 7—The magnetic field, radiation, at P due to alternating current in a

distant aerial, OZ, is the Y component, [6, @ is in phase with the electric field

which is parallel to the antenna OZ. The two fields are in time, phase; in space

quadrature.

A must in some manner depend on the current in the aerial and since this

is a long vertical current A will not change as we move up in the Z direction

dAx
above P. Then = 0.

dz
dA

7

Then p = H =
dx

From the above we have dA
z
= — Hdx A = — I Hdx.

Ids Ih
But we have assumed for constant current that H = = — where h is the

r 2 x 2

height of the aerial x = r the distance between P and the aerial,

/•dx Ih
Then Az = —Ih I — = — .

J x 2 x
HO

From this we have H
dA

dx

x

dx
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Of course, if we take the derivative we will get our old value for H, but we
have heretofore assumed that the current in the aerial is direct current or

the equivalent to direct current. This is not true. The current is alternating

current, or I = I-sin u>t. Also, it takes some time for the field to reach the

point, P. The field at P is due to the current which was in the aerial a fraction

of a second before the time t.

Then I = I sin a>(t—t'). Since space equals velocity times time, t' = x/v

where v is the velocity of light, then the current is I = I sin to(t—x/v)

-d fh In sin o>(t — x/v)
>

and H = —
dx I x

J

differentiating,

hl x hl o> x
H = H

—— sin w(t — — ) -\ cos d>(t ) .

V VX V

Thus we see that the field, H, consists of two parts. The first is the field we
get by considering the current to be constant, or if alternating current, by
considering the field to be independent of the sine of the angle. This virtual

field is numerically the same as the field due to a D.C. current.

The second part is that in which we consider the angle to depend on the

distance x. The two parts are out of phase by 90 degrees. We remember
we had trouble with the ordinary field in our elementary picture because it

was out of phase with the electric field. This second part is in phase with the

electric field.

The first part is induction. The second part is radiation. The first

part the induction diminishes as the square of the distance while the second, the

radiation, diminishes as the distance.

We can write the virtual values of the magnetic field by considering the

sine and cosine to be unity, and writing I for the virtual current, then

Induction, H = hl/x 2

Radiation, H = hI<o/vx.

If I is measured in amperes, 1/10 will give the value of I to make the field

in lines per square centimeters.

w 2x
Since — = —

v X
hI2x

Radiation, H =
.

lOXx

Equating the two values and solving for x we find that the two components

of H are numerically equal when x = X/2x. At a distance equal to 1/6.28 of

a wave length the two values are numerically equal. Since they are in time

quadrature the measured value will be 1.414 times the calculated value of one.

Closer to the aerial the value of H is nearly all induction and diminishes as the

square of the distance. Beyond this point the field is mostly all radiation

and varies inversely as the distance.

For practical purposes when the distance is less than 1/20 of a wave length

the radiation can be neglected, and when the distance is greater than 1/2 wave
length the induction can be neglected.

If instead of an antenna aerial we have a coil aerial the induction can be

calculated as is done in the first part of the paper. Induction is the ordinary
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I
i

field due to direct current. It is found to diminish as the cube of the distance

from a coil. It is 21A/d 3 perpendicular to the plane of the coil and IA/d 3

in the plane of the coil.ZFor radiation we follow

Dellinger. Consider a square

coil in the XZ plane of height

h, and length 1. (Fig. 8.)

The horizontal parts will

not contribute to field at a

point P in the horizontal

plane. Then the radiation

at P consists of two compo-

nents one each from the two

Yf vertical wires. These two

will be equal but slightly

out of phase because the dis-

tance of one is greater than

the other by X centimeters.

The resultant field at P is

the vector difference of the two equal vectors which differ in direction by a

small angle, 6.6/2x = 1/X or 6 = 2xl/x. In the diagram (fig. 9) oa = 2Hi sin

8/2. Since 6 is small, sin 6/2 = 6/2, then

fhlo^ 2xh

Fig. 8—A square coil carrying radio frequency current

produces two fields at the point, P. The induction diminishes

as the cube of the distance while the radiation diminishes as

the first power of the distance.

oa = H = 2 = 4x 2hlnl/10 X 2d.

Thus the radiation from a coil varies inversely as the

distance while the induction varies inversely as the cube of

the distance.

The radiation from a coil varies inversely as the square

of the wave length while from an antenna inversely as the

wave length.
The induction from a coil is IA/d 3 and the radiation

from the same coil is 4x2IA/X 2d. Equating the two values

1

we get — = 4x 2/X 2 or d = X/2x. Thus the two components
d 2

are equal at a distance X/6.28, the same being true for an an-

tenna aerial. Figure 10 gives the relative distribution of

radiation and induction about a coil at a distance, d = X/2x.

Close to the coil or antenna aerial the field is primarily

induction. Figure 11 gives the distribution when d = X/20.

The energy represented by induction does not leave the

aerial. It is stored in the medium during the first fourth

of a cycle and then returns to the aerial during the second

fourth of the cycle in the same manner as the field of an ordinary transformer

or choke coil. The induction is the field which stays at home. The energy of

the field of the radiation does not return to the aerial but passes out to infinity

unless it is absorbed by intervening objects. The energy is radiated into

space.

Of course it is possible to absorb a part of the energy of induction if the ab-

sorber is in the field of the induction, that is, near the aerial. This is the same

Fig. 9—The two

vertical sides of

length, h of the

square coil produces

two equal radiation

fields but due the

distance, 1, they are

slightly out of phase.

The vector differ-

ence is proportional

to the vector oa.
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as in a transformer; part of the energy may be absorbed by the secondary coil,

in which case it can not return to the primary.

It will be noted that radiation from a given aerial depends upon the

frequency or wave length. Induction is independent of frequency. The
virtual value of induction field for 60 cycle, 300 meters or 41 meters is

numerically the same as that produced by D.C. current.

X76°

Fig. 10—In the plane of a coil the radiation field and the induction fields are numerically equal

when the distance from the coil is equal to the wave length divided by 6.2832. The figure shows
the relative values in all directions about the coil. Perpendicular to the coil radiation is zero and

induction is two times that in the plane of the coil.

Fig. 11—Shows the relative values of the two fields when the distance is one twentieth of a wave
length. The induction is many times the radiation.

We have spoken of the magnetic field only. Maxwell's equations show

that the energy of the magnetic field is exactly equal to the energy of the

electric field. Thus if we know the magnetic field we know the electric field.

The electric field and magnetic fields are always associated together. They
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are two aspects of the same thing. They really are the same thing in a certain

sense. For an illustration take a simple D.C. circuit. The current through

a coil is equal to the total e.m.f. divided by the total resistance. The current

is also equal to the Pd. at the terminals of the coil divided by the resistance

of the coil. These two values are equal. The current in the coil is not 21.

In the electro-magnetic system of units the ratio between E and H is 3 X 10 10
.

E in absolute units of potential per centimeter is equal to H in Gilberts times

v, (3 X 10 10
).

E = Hv = 3 X 10 10 H.

If we divide by 108 we have E in volts per centimeter. Multiply this by 100

and we have E in volts per meter. If we reduce this to micro-volts by multi-

plying by 106 we again have

E = 3 X 10 10 H micro-volts per meter; thus H X v is either absolute

units of potential per centimeter or micro-volts per meter.

E is usually expressed in micro-volts per meter written jjlV/M

HV
E = 3 X 1010 H— .

M
The e.m.f. induced in a coil by the magnetic field is e = AH 2xn/108 volts

where A is the area of coil and n is the frequency.

The e.m.f. induced in a vertical antennae of height h, is the number of

lines cut per second, e = hvH abs, ore = Eh abs, or instead of absolute units

the e.m.f. may be expressed in micro-volts, if h, height, is expressed in meters
instead of centimeters.

The received current can be determined by dividing the e.m.f. in volts

by the resistance of coil or antenna.

From these fundamental equations Dellinger's four equations 1 for received

current can be obtained. They are:

From antenna to antenna

I
r
= 188 h

s
h

r
I
s
/RXd

Antenna to coil

I
r
= 1181 h

3
h

r
l
r
N

r
I
s
/RX'M

Coil to antenna

I
r
= 1181 h

s
yi

r
N

s
I
s
/RXM

Coil to coil

I
r
= 7150 h

s
l.h

r
l^N

s
N

r
I
s
/RX 3d

where h is the height, 1 is the length, n is the number of turns of coil, I is current

in amperes, R is resistance in ohms, X is wave length. The subscripts s and r,

refer to the sending and receiving stations respectively. The lengths may be
in centimeters, meters, feet or miles, provided all lengths are measured in the
same unit. These formulae are for radiation. Induction must be calculated

from other formulae.

The height, h, is the effective height of the antenna aerial. In the original

equation, Ids cos 0/r 2
, we assumed that the value of cos 6 was unity, and again

we assumed that all the current flowed to the top of the aerial. Since we
know the capacity at the top is distributed and not bunched, we know that the
height will in general be less than the measured height. The effective height
is the height of a theoretical aerial with all the capacity at the top and one in

which all the alternating current flowsJfrom bottom to^top^and which will

13. H. Dellinger. Scientific Papers, Bureau of Standards, No. 354, p. 463.

13—43033
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produce at a distant point the same field as the aerial in question. However,
the distant point must not be too far removed, since there is always a certain

amount of absorption by intervening objects which diminishes the intensity

at a great distance. The "distant" point should be a few wave lengths removed
from the aerial, one wave at least. With small power the distance may of

necessity be a fraction of a wave and may be so close that the field is mostly

induction field, in which case the exact distance as measured is at best an

approximation. There seems to be some confusion in the definition of h.

Some use h as the distance from the ground to the "top", others use h as twice

this distance, arguing that the earth being a good conductor will reflect and

give the same effect as an aerial in free space with the center of the aerial

being the point of connection to the ground. Practically this confusion does

not make much difference since the height, h, must be determined experi-

mentally.

The height, h, is determined by winding a coil or loop of rather large di-

mensions or diameter, and connecting a tuning condenser and a radio frequency

milliammeter in the circuit and measuring the received current when the coil

is placed at a distance, d, from the aerial. The area is calculated from the

formula A = nxr 2
if circular, or nhl if rectangular, n being the number of turns,

r the radius of the coil, h, 1, being the dimension of the rectangle. The re-

sistance can be measured by the resistance variation method if a radio

frequency resistance box is available, or by the reactance variation method if

the capacity of the condenser is known.

From the received current when the coil is in resonance, and resistance

of the circuit, the e.m.f. is calculated. From the e.m.f. and the area the field

is calculated. From the field and the distance from the aerial and the current

in the sending aerial, the

height, h, is calculated,

assuming the equation

which gives the value of

the field at the given dis-

tance. If the distance is

less than Y2 wave length

it will be necessary to

take the induction into

account. Figure 12 gives

the distribution of radia-

tion and induction when
d = X/2. If the distance

is less than one-sixth of

a wave, the field is mostly

induction. It will be well

to assume an approximate

value of the height, h,

and calculate both the

radiation and the induc-

tion for the point. From
the larger, and the error

use the larger of the two

a

JL70
Fig. 12—When the distance is as great as one-h:

induction is relatively small and can be neglected.

wave the

the relative values one can determine which is

which will be made if one is neglected. Of course,

if one is discarded.
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If the values are of the same order, then since they are in time quadrature

the effective field is the square root of the sum of the squares. If the ratio of

one to the other is one to two, then the received field is \/l 2 + 2 2 = 2.24. If the

smaller value is neglected the error is more than 10%. If the relative values

are one to four, then -\/l 2 + 4 2 = 4.13. The error is 3 per cent. If the ratio

is one to ten, then \/V + 10 2 = 10.05. The error is Y2 per cent. When the

ratio is one to seven the error is 1 per cent. Taking other errors into account,

one can neglect the smaller without appreciable error when the smaller is not

greater than one-fifth of the larger.

If it is necessary to place the coil near the aerial to get enough received

current to read accurately, there is a question when the distance, d, is measured.

The induction from an antenna varies inversely as d 2
. The center of "gravity"

of the field is not at the center of the coil. Unless the distance, d, is rather

great, there will be an error in placing the coil. If the radiating aerial is a coil,

then the induction varies inversely as the cube of the distance and the error

will be greater if the distance is measured from the center of the coils. If the

distance, d, is great compared to the dimensions of the coil, the error will

become negligible. Then the question arises, why not make the coil of small

dimensions with a large number of turns?

We are trying to get as large value of the received current as possible.

Since we are working with a particular frequency there is a maximum value

of inductance which the coil can not exceed.

The received current depends upon the area, A, n times the area of one turn,

and inversely upon the resistance of the coil. A little practical experience

with receiving coils will convince one that with a given inductance A/R is a

maximum when the coil is made with a small number of turns and large

diameter—one turn if practical to handle.

Assuming we have readings which are practically correct, then the height,

h, of the transmitting aerial can be calculated.

After knowing the effective height of the transmitter the field at other

points can be calculated. A receiving antenna can be erected and the received

current in the antenna measured as well as the resistance of the antenna.

Knowing the current, resistance and field, the effective height of the receiver

can be calculated from the formula E = I/R = Hvh, h = I/RHv. The height

h, can be assumed to be constant for frequencies which do not differ greatly

from the frequency used in the above determination. If the determination is

made at 300 meters the same value of h can not be used at 40 meters.

If the antenna is a directive aerial such as an P aerial, the field will be
different in different directions. The current should be measured at several

points distributed around the aerial and the mean value of h used.

Effective height of a Coil. The effective height of a coil is the theoretical

height of an antenna in which the received e.m.f. will be the same as that

received in the coil. One in which the received current is the same assuming
the resistance of the coil and antenna to be the same. One can get an idea of

the effective height of coils from the following table:
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Effective Height of Coils 2

Turns Diameter Frequency Effective Height

4 44.2 4.9 x 10 6 6.3 cm.
4 44.2 5.4 6.9
4 44.2 7.8 10.0
2 35.0 8.6 3.5
2 35.0 16.1 6.5
2 35.0 17.0 6.8

Instead of a milliammeter in the circuit a tube voltmeter can be used to

measure the Pd across the condenser.

Pd = ILw = I/Cw, since I = E/R, E = PdR/Lw = Pd R C w.

With a tube, voltmeter readings can be made at a greater distance. How-
ever, the resistance of the circuit is increased when the voltmeter is used.

It is necessary to measure the resistance with the voltmeter connected.

Table Showing Change of Effective Height with Wave Length

Effective Wave
Turns Area Frequency Height Length

8 88x88 .6x 10 fi 7.8 cm. 500 meters
8 88x88 1.0 13.0 300
8 88x88 1.5 19.4 200
2 56 x 56 10.0 13.0 30
2 56x56 7.5 9.9 40
2 56x56 3.0 4.96 100

In the above tables it will be seen that the height of a coil is very small.

This is partly overcome by the fact that as a general thing it is much easier

to get a coil of small resistance than it is to construct an antenna of low re-

sistance. A coil is also usually more portable than an antenna.

sFriis and Bruce. Inst. Rad. Engs. Proc. 14. 518, 1926.


