
CONCERNING THE OPTICAL PRINCIPLES WHICH ARE
INVOLVED IN THE HALO PHENOMENON 1

Oliver E. Glenn, Lansdowne, Pa.

An observation which was published by John Ruskin in 1851 might
have prevented much subsequent error in regard to the phenomenon of

the ordinary halo if scientists had continued investigation along" the lines

suggested. This observation occurs in the first volume of The Stones of

Venice (Ch. 21, Treatment of Ornament).

"When the sun rises behind a ridge of pines, and those pines are seen from a

distance of a mile or two, against his light, the whole form of the tree, trunk, branches

and all, becomes one frostwork of intensely bright silver, which is relieved against the

clear sky like a burning fringe, for some distance on either side of the sun."

Ruskin remarks that, among literary men, probably only Shak-

speare and Wordsworth had noticed this fact. The allusion by Shak-
speare is as follows:

"But when, from under this terrestrial ball,

He fires the proud tops of the eastern pines."

(Richard II).

In the panorama mentioned, which contains the pine trees, the ob-

server is seeing two opposite segments of a halo around the sun. This

will become theoretically clear if we choose, as a primary type of re-

flector, a small sphere which has a glossy surface, for example, a marble
of china-ware. Place this sphere at a distance of about two feet in front

of an unshaded desk lamp L of one (frosted) bulb, the observer being

six feet from the lamp. Arrange, also, to move the sphere, at choice,

along the line perpendicular to the observer's line of sight toward the

lamp. When the sphere is in front of the light no illumination is re-

flected from the former to the observer. The sphere is then in its com-

pletely shaded phase. If moved a considerable distance to one side, the

ball shows reflected light only in the form of a faint virtual image of the

lamplight. However, when the ball is moved so that it is in the new-

moon phase as seen by the observer, the case is very different. Intense

illumination in the form of a spot of light P, a so-called brilliant point2
,

appears on the sphere as a feature of its crescent illumination. This

point maintains its brightness as the sphere is moved back and forth

along its line of motion for a short definite distance. W. H. Roever

first gave the definitions of brilliant points. His principal definition is

as follows:

A point P is said to be a brilliant point of a surface T with respect to a source

of light Pi and an observer's eye P», if the internal bisector of the angle P\ PPj is the

normal to this surface at the point P.

Thus the observer P, sees, in effect, at a brilliant point P, the light

itself or a section of it, whereas, when our sphere is moved to one side,

what is seen is a virtual image, that is, the light greatly reduced in size

and intensity by the curvature of the surface. This is an elementary

observation but its significance as a scientific observation has been Over-

head in outline before the Academy December 4, 1931.

^Roever, 1908. Trans. Amer. Math. Soc. 9:245-279. Roever, 1922. Amer. Math.
Monthly 29:149-156.
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looked more or less. No astronomer, for instance, has ever recognized
this as the principle according to which Venus is so brilliantly lighted

when she is an evening star. Primarily the halo is a result of brilliant

point reflection from droplets of water-vapor or of ice, floating in the

air between the observer and the sun. This is made clear as follows

(Fig. 1) :

Ftg. 1. See text.

Consider a lamp L and an observer M, both fixed in position, and a

sphere s on the perpendicular to LM at C. The sphere will represent a

droplet in a halo which has C as its center. We have magnified the drop-

let for clearness. The plane of the halo will be perpendicular to LM.
Let I be the ray of light which is tangent to s. Anyone, N, situated a

little above I, would see the sphere in its dark-of-the-moon phase. In

fact it is necessary for N to come below a line g of somewhat smaller

gradient than that of I in order to see the brilliant-point P on s, and P
stays visible to N as long as the latter remains within the fixed angle

gPh. Below the line Ph, P lapses in brightness, becoming a virtual image

reflection. The fixed observer M, being within <6 = hPg, sees the brilliant-

point P, one among the myriad which form the halo.
:i

Let us next find the halo's width. As we move s toward C, the

vector g turns inward until it eventually intersects LM, as at A. As we
continue to move s toward C, A approaches M. The position a , of s

when A reaches M, is on the lower boundary of the halo. Next suppose

that s is moved along its perpendicular away from C. Then h approaches

M, and, if b' is the location of s when h reaches M, b' marks the upper

boundary of the halo. The whole area occupied by the halo is obtained

by rotating a'b' around LM as an axis. It is well known and is readily

verified by use of any glossy sphere for s that, when I is parallel to

LM the case of a halo of the sun the angular radius of the

halo is not greater than the 22°. We write <gPl = t.

Proposition 1. To determine the width, W, of the halo and the

diameter, 2V, of the dark area within, each as a function of LC, CM,
9,t, only.

Let the small circles in Figure 2 represent droplets of water vapor

situated at the extreme upper and lower boundaries, respectively, of the

halo. WehaveLC = n, CM = m, CQ = V. QP = W, (Def.), <gPl=t=<MQK,
<MPg = 8= <hQM, (Cons.). Let <CLQ = 0, <QLP = «, <CMQ= 5, <QMP = 7 -

3The point h is the intersection with LM, of the line extending from P toward M.
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Then, since an exterior angle of a triangle equals the sum of the two

opposite interior angles,

(«+/8) = (tf+t)-(7+8), j8 = t-«, a= 9-y.
Also 6, t are fixed angles and 5 < t, while by experiment, 0+t> 7+5, 5 <22°. Let

a = tan (0+t), b = tan t, then,

V = n tan /3=n tan (t-5) = (nb-n tan 5)/(l+b tan 5),

V = m tan 5.

Eliminating tan <5.

bV2/m+(m+n)V/m-nb = O,

and the diameter of the dark area is

(1) 2\ (m+n)/b + V 2/b

/

In like manner,

V+W = n tan (a+fi) =n tan (6+t-y-S)

(m+n) 2+4b2mn '

5)

= na-ntan(7+5) / l+atanfr-N) L

V+W = m tan (7 +5),

Eliminating tan (7 +5),

a(V+W) 2/m + (m+n) (V+W)/m-na = 0,

V+W=-(m+n)/2a+ (m+n) 2+4a2mn V 2/2a.

Hence the formula for the width of the halo is,

(2) W (m+n)/2a+ ^ (m+n) 2 +4a2mn M/ 2/2a

- -(m+n)

/

)/2b+-( (m+n) 2 +4b 2mn^/Va

Fig. 2. See text.

Proposition 2. To determine the diameter, 2V, and the width, W,
after the light, L, has been removed to an infinite distance (n—>oo). In

this case the rays which come up to the rear of the canopy are parallel

(a—>B^O. This is the problem of the halo around the sun or moon. We have

only to find the limit of W and 2V above, as n^co.
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The radicals in (2) may be expanded into absolutely convergent

binomial series. The first terms of these series cancel the respective

first terms within the brackets and all terms of each series, after the

second, approach zero as n^oo . The second terms of the series combine into,

C=(a-b)mn/(m+n).
Hence,

(3) W'=Lim C =(a—b)m.

Likewise,

(4) 2V Lim 0=Lim 2bmn/(m+n)
n—>co n—»oo

2bm.

The following table shows the respective values of 2V, W, calcu-

lated on the basis of formulas (1), (2), (3), (4), from the indicated

assigned values of m, n, 9, t. The unit of length is one inch.

Ill ii
() t 2V W Photo.

80 10 27° 10° 3 1 4.8 Fig. 3

73 24 27° 10° 6 .

3

9.3 Fig. 4

71 42 27° 10° 9.2 13.2 Fig. 5

71 27° 10 25 41.0

When n = °° the angle subtended at the midpoint M of the camera

film by the radius of the dark region within the halo, is about 10°. To
this we must add 12° to obtain the angle which subtends the radius of

the circle of maximum illumination.

The halo of 46 degrees. Under Roever's definition, concave reflect-

ing surfaces can also give brilliant points. Let s in Figure 1 be a

transparent sphere (droplet). A ray from the light will enter the

sphere and be relayed by refraction so that it is reflected against a

point P' in the concave side of the spherical surface. It emerges from

the sphere and reaches the observer M''. The formulary (1),— , (4) still

holds. When the angles 9, t (cf. (2) ), are 9=-24°, t=35° this point P'

is found to be a brilliant point to an observer within O. Thus we obtain

another known type of halo. The radius of its circle of maximum light

subtends, at M', the angle 46°, (n=oo).

Description of an experiment. The accompanying Figures 3, 4, and
5 are dark-room photographs (time exposures) of artificial halos, which
were obtained as follows: The pictures show reflected light from a plane

canopy of glass beads, the source being a lamp L (cf. Fig. 1) placed on

the side of the canopy opposite that of the camera. The distance from
the canopy to the camera plate, (focal distance), is m. The canopy,

which is 2.3 feet in width, was woven of strings or series of approxi-

mately spherical glass beads of diameter less than V» inch. The beads

(turquoise blue) were strung at intervals of If, inch on black, three-
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strand cotton yarn, to form the series. The series were woven in various

designs to form the canopy, but mostly with one series going around in

spiral fashion at intervals of !•> inch, other series being strung as diame-

ters all the way across the canopy.

Fig. 3. See text.

:

Fig. 4. See text.

One purpose of the construction was to show photographically the

individual brilliant points which combine into a halo. On account of

the screen at the center, only light which is reflected toward the camera
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from the beads is intense enough to affect the camera film. Some regret

must be expressed for the use of the yarn, since its fuzz caused enough
diffraction near the center 4

of the canopy almost to obliterate, in the

photographs, the dark interior of the halo. The use of copper wire of a

caliber equal to that of the aperture in the beads would eliminate dif-

fraction. It is obvious from the theory, however, that there is a dark

circle at the center of the canopy since the beads there are in the dark-

of-the-moon phase. Aside from this defect each picture clearly shows a

halo. The author considers the photographs as being successful in view

of the fact that, in this case, the reflecting wall is only one bead (drop-

let) in thickness.

Fig. See text.

The camera distance was about 75 inches, and corresponding to

three distances, n, of the light from the canopy, actual measurements
of the configurations of the halos on the canopy verified the correspond-

ing calculations, which are summarized in the accompanying table.

The diametral series of beads are regularly eclipsed, that is, pass

into the dim virtual image reflection, at the outer edge of the halo in

Figures 3 and 4. Note that the halo has a bright part and that, in all

cases, there is a gradual decline of its intensity in its outer portions.

The bright part corresponds to the angle, (within 0), of maximum illumination

of the brilliant point on a bead. The dark circle is comparatively small

when n is small, but, when the incident rays are parallel, the diameter

of this interior circle subtends, at the camera plate M an angle of about
20°. Then the dark circle is recognizable as that to be seen in an ordi-

nary halo. It is useful to consider the figure on the canopy as if pro-

4These regions of maximum diffraction have been removed from the pictures. Prob-
lem in technique: Find the circle of maximum illumination in Figure 5.
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jected from M upon a distant wall. What the canopy presents to the eye

is brilliant rather than obscure.

Discussion.—In any landscape where there are trees with glossy

leaves, or wet leaves lighted by the morning or afternoon sun, brilliant-

point illumination of portions of this foliage will be conspicuous. Such

a tree, when nearly between the observer and the sun, shows a bright

and charming illumination, and the general appearance of such a land-

scape would be very different if the optical principles were different from
those which we have described. This fact is of importance to landscape

painters. When a tree is pictured, against the light of an afternoon

sky, as something entirely dark against a bright back-ground, it im-

presses us subconsciously at once as something unreal. We are accus-

tomed to a fringe of brilliant-point on such a tree. This remark is a

severe criticism of a good many paintings. Corot, among others, was
a master with brilliant-point light.

Contrary to what is asserted in the present article, in quite all of

the previously existing theory concerning halos it is assumed, and, as

far as the present writer has been able to find, without adequate dem-
onstration, that refraction of light through ice crystals is the primary
cause.


