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The conic is variously defined in college textbooks on projective

geometry as the projection of a circle on a plane, as the locus of the

points of intersection of corresponding lines of two projective, non-
perspective pencils in the same plane, or as the locus of the point from
which four given fixed points are projected by lines making a constant

cross ratio. Still another characteristic property of the conic has been
used to define it, but this has been made use of rarely: first von Staudt
in his Geometrie der Lage (1847) considered the locus of the self-con-

jugate points of a general plane polarity having at least one such point

and proved that the locus is a conic section ; in recent years Enriques

used this property as his definition in his textbook on projective geometry
but did not follow it consistently in his discussions. At the suggestion

of Professor Tibor Rado of The Ohio State University, I undertook the

problem of developing some of the projective properties of the conic from
the definition in terms of a polarity and attempted to carry out sys-

tematically the plan introduced by Enriques. The present paper gives

a brief summary of some of the steps in this discussion of the conic. The
plan may be of interest to an advanced undergraduate class in projec-

tive geometry, perhaps as material for special or honors work in addi-

tion to the usual first course in the subject, because of the use made of

some rather simple concepts not generally given consideration in ele-

mentary courses, particularly the unusual definition of the conic and the

properties of projectivities in the plane and of groups of projective

transformations.

The familiar properties of the conic as a curve of the second order

and class follow readily from the study of self-conjugate elements in a

polarity so that such considerations will be omitted from this summary.
Also the general theory of poles and polars with respect to a conic is

an immediate consequence of the definition of the conic itself.

As a means of securing unity in the discussion of other topics it was
found convenient to associate with the conic a particular group of pro-

jective transformations. If we suppose the conic k is given as the self-

conjugate points of a polarity P in the plane %, then the class of all

collineations in iv which transform k into itself is a group, which may
be denoted as G(P). Formally, the collineation C belongs to G(P) if

and only if

O-l P C=P.
Each element of G(P) either is an involution (a collineation of period

two) or is a collineation which may be represented as the product of

two involutions. The involutions of G(P) are therefore of special in-

terest.

Every point-and-line which are paired by the polarity in -n and

which are not coincident belong to a unique involution of G(P), the

point and line being center and axis of the involution, respectively.

(176)
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Either center or axis is sufficient to determine the involution. This cor-

respondence between points or lines of the plane and the involutions of

G(P) makes possible a computational method for deriving* relations

among- the points and lines of a figure. The following theorem was
found especially useful in considerations of conjugacy of points or

lines:—The product of two involutions in G(P) is commutative if, and

only if, the centers are conjugate in P, that is, if each center lies on the

axis of the other involution.

Furthermore, if two involutions are commutative, their product is

a third involution, and the three involutions so related together with

the identity form the four-group. The three centers are the vertices of

a self-polar triangle.

The non-identical collineations of G(P) belong to three classes ac-

cording to the type of figure formed by their fixed elements: (a) a

triangle with two vertices on the conic and a third not on the conic, the

sides and vertices comprising the totality of fixed lines and points, re-

spectively; (b) a tangent and its pole, the point of contact with the

conic; (c) a line not intersecting the conic and its pole.

A general collineation of G (P) has associated with it a fixed line

on which are found the centers of its factor involutions and each point

of which that is not a point of intersection with the conic is the center

of one such factor. From the previous remark concerning commutative
involutions it is seen that the factors of an involution have centers lying

on the axis of the involution. This line on which the centers lie is the

axis of the collineation.

A collineation of G(P) is determined uniquely when the points which
correspond to an arbitrary set of three points on the conic are prescribed.

There is, therefore, an isomorphism between the group G(P) and the

group of projectivities of points on the conic. This suggests a connec-

tion between the present treatment and the usual theory of projectivity

on a conic.

A collineation is uniquely determined when an arbitrary line of the

plane is prescribed as axis and the image of a single point of the conic

is given, the image necessarily being chosen on the conic also, as the

collineation must transform the conic into itself. Two collineations may
have the same fixed elements and yet be distinct. All collineations shar-

ing the same figure of fixed elements form a subgroup of G(P).

These properties just outlined and others not listed make possible

rather simple proofs of some of the standard theorems on the conic. The
theorem of Pascal on the inscribed hexagon may be demonstrated by
defining a collineation in G(P) which carries three alternate vertices of

the hexagon into the other three in a properly chosen order, and then

noting that the pairs of opposite sides of the hexagon meet in points

which are centers of factor involutions of the collineation and which
must lie on the same line, the axis. This type of proof may be applied

to the special cases of inscribed pentagon, quadrangle, and triangle

without reference to the usual continuity argument.

The proof of a theorem due to von Staudt illustrates the method of

proof by computations with involutions in G(P).
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THEOREM If a line intersects two sides of a triangle inscribed in a

conic in a pair of conjugate points, the line is conjugate

to the third side, and conversely.

Let the inscribed triangle be

A ABC and suppose the line a' inter-

sects AB and AC in the conjugate

points Pi, Pi respectively. Let / be

the involution with axis a' and let

h and Ii be those with centers Pi

and P2 respectively. (Questions

concerning the existence of these

involutions, such as occur when a'

is a tangent or Pi lies on the conic,

need not be considered, for in that

case the proof is immediate without

the use of the involutions.)

If Pi and Pi are conjugate, the

product IJi is commutative and is

an involution in G(P),—in fact, the

involution / since the centers lie on

its axis a'. Now / carries B into C,

for, in the product IJi, B is taken

into A by h and A into C by h..

This implies that the center of /

lies on BC and hence a' is conju-

gate to the side a=BC.
The converse may be demon-

strated in similar fashion.

In conclusion, attention is called to the fact that the above theorem
is useful in proving the theorem of Steiner, which asserts that the points

of a conic are projected from any two of its points by projective pencils

of lines. This now brings the discussion into the channels followed by
most texts in projective geometry.


