Molal Boiling Point Constant for Butylacetylene

G. F. HENNION and JOHN GONCHER, University of Notre Dame

Butylacetylene (1-hexyne) constitutes an excellent example of an aliphatic hydrocarbon readily prepared in pure form¹. As a part of a research program concerning substituted acetylenes it was decided to determine the molal elevation of the boiling point for butylacetylene. The data have revealed that neither the triple linkage nor the labile hydrogen cause undesirable effects in the cases studied.

Six solutes were selected for the experiments. Each was of Eastman grade. The butylacetylene was prepared as previously described¹. The McCoy apparatus was used with a Beckman thermometer. The essential data are given in Table I. For the sake of simplicity, the volume of each solution was considered to be the volume of the solvent. The density was taken as 0.7108. The constants (K_b) given are, therefore, close approximations only and are expressed as degrees per mole of solute in 1000 grams of solvent. The values were calculated from the expression

$$K_{b} = \frac{m(\Delta t)G}{1000 \text{ g}}$$
, where

 $K_b = B$. p. constant m = mol. wt. of solute used G = wt. of solvent used g = wt. of solute used.

Independent work in this laboratory² on the vapor pressures of acetylenes has shown that butylacetylene has a molal heat of vaporization of about 7586 calories at its normal boiling point, 71°. This value permits calculation of the boiling point constant by means of the equation

$$\mathbf{K_b} = \frac{\mathbf{R}(\mathbf{T_1})^2}{\mathbf{L_v}\mathbf{n_1}} \; \text{, where} \;$$

Substituting,

$$\mathbf{K_b} = \frac{1.985(71 + 273)^2}{7586(1000/82)} = 2.54^{\circ}$$

¹ Hennion, 1937. Proc. Indiana Acad. Sci., 47: 116-121.

² Rich and Hennion, Unpublished work, this Laboratory.

CHEMISTRY

The calculated value, 2.54°, is only in fair agreement with the experimental average, and no value as high as 2.54° was ever found.

Solute	Grams Solute	Grams Solvent	∆t	K _b
p-Dibromobenzene	$\begin{array}{c} 0.2500 \\ 0.4000 \\ 0.5000 \end{array}$	$14.9 \\ 21.2 \\ 24.9$	$\begin{array}{c} 0.145 \\ 0.160 \\ 0.175 \end{array}$	$2.04 \\ 2.01 \\ 2.05$
Diphenyl (M.W., 154.1)	$\begin{array}{c} 0.3019 \\ 0.4038 \\ 0.6438 \end{array}$	$17.4 \\ 11.7 \\ 18.1$	$\begin{array}{c} 0.260 \\ 0.540 \\ 0.520 \end{array}$	$2.31 \\ 2.42 \\ 2.26$
Naphthalene	$\begin{array}{c} 0.3002 \\ 0.6002 \\ 0.2008 \end{array}$	$13.1 \\ 18.5 \\ 12.8$	$\begin{array}{c} 0.390 \\ 0.550 \\ 0.370 \end{array}$	$2.19 \\ 2.17 \\ 2.22$
m-Dinitrobenzene	$\begin{array}{c} 0.3000 \\ 0.4000 \\ 0.5000 \end{array}$	$12.4 \\ 19.9 \\ 22.4$	$\begin{array}{c} 0.315 \\ 0.270 \\ 0.290 \end{array}$	$2.19 \\ 2.26 \\ 2.18$
Benzophenone (M.W., 182.1)	$\begin{array}{c} 0.3000 \\ 0.4000 \\ 0.5000 \end{array}$	$12.8 \\ 15.3 \\ 20.3$	$0.285 \\ 0.310 \\ 0.290$	$2.26 \\ 2.16 \\ 2.14$
Stilbene	$\begin{array}{c} 0.2006 \\ 0.3012 \\ 0.4000 \end{array}$	$\begin{array}{c}11.4\\22.0\\12.4\end{array}$	$\begin{array}{c} 0.230 \\ 0.180 \\ 0.410 \end{array}$	$2.36 \\ 2.38 \\ 2.30$
Average value of K _b			•••••	2.21

TABLE I.-Molal Boiling Point Constant Data for Butylacetylene

Summary

1. Butylacetylene is an aliphatic hydrocarbon readily prepared in pure form and entirely suitable for many molecular weight determinations by the boiling point method.

2. Experimental values for the molal boiling point constant for butylacetylene indicate a value of about 2.21° per mole of solute in 1000 grams of solvent.