
Note on Linkages

M. H. Ahrendt, Ball State Teachers College

The article "Linkages", by Mr. Hilsenrath, in the October 1937 issue of

the Mathematics Teacher, is one of special interest since it deals with a subject

not ordinarily emphasized in mathematics courses. It opens a new and interest-

ing study to the student with ramifications carrying over into many related

fields of practical and theoretical work. The article is of greatest interest

if the reader actually constructs the linkages described and observes their

operation. The construction of these linkages, however, presents some problems

because of a few slight inaccuracies and omissions in the article.

The most serious omission appears to occur in the discussion of the Peau-

cellier Conicograph. It is stated in the article that when the length of the
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radius bar ED is equal to the distance between E and (', then the curve

described by / is a Cissoid of Diodes. This is a necessary but no! a sufficient

condition. Evidently there are an infinite number of positions of E that will

enable us to have a radius bar ED=EC (Fig. lj, but in only one of these

positions will the cissoid be drawn. The condition that Mr. Ililsenrath has

omitted is this: / 9 9

V,EC = HtDA — AI
As pointed out by Mr. Hilsenrath, the most important property of the

Peaucellier Cell (used in this linkage with C as the fixed point instead of D) is

2 2

that the product DC DI = DA — AI = a constant. When the rhombus is

collapsed so that C and / coincide, then we readily see that

(1) DC . DI = DC - FC .

FC then equals 2EC, and is the diameter of the circle which the point D must
follow if the linkage is to draw the cissoid.

Now let another circle with center M be drawn tangent to the first circle

at C and with diameter CG = FC. Then
CH = DC.

Also DI = DC + CI.

Substituting these values in equation (1) we get

(2) CH (CH + CI) = CG .

The question now is, does this last equation satisfy the requirements of

the cissoid? Let GK be tangent to the circle at G. Lay off CI' equal to HK.
Then by definition the locus of the point I' is a cissoid. By using the triangles

CHG and CKG, we note the following facts:

ZHCG = ZKCG
I CHG = Z CGK

.-.ACHG ~ ACKG
CH CG

* CG ~ CK

or CH • CK = CG

.

But CK = CH + HK = CH + CI'

(3) .'. CH (CH + CF) = CG .

From a comparison of equations (2) and (3) it is evident that / and I>

must be the same point, and, therefore, when the linkage is deformed, the point

I describes the cissoid.

The discussion of Bricard's Straight-Line Motion also appears to contain

some slight inaccuracies. The article states that the length DB=EC=— )

ac
and that DE = ~r. But these two conditions are evidently impossible from the

appearance of the linkage and they do not seem to fit the proof needed to

establish the theory of the instrument. The correct ratios appear to be these:

b2 be
Z)B =EC=~, DE =— .

Mr. Hilsenrath also states that the proof for this linkage is based on the

theorem that a straight line is the locus of a point which moves so that the

difference between the squares of its distances from two fixed points is a

constant. The theorem best applied here, however, seems to be a much simpler
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one from elementary geometry, namely: The locus of a point equidistant from
two fixed points is a straight line which is the perpendicular bisector of the
line joining the fixed points. Using this theorem and the ratios given above,
the proof for this linkage is quite simple. By drawing the lines FA, DA, etc.,

we form triangles. It may then be proved in several ways, using congruency or

similarity of triangles that FA=AG. According to the above theorem, then,

the locus of A is a straight line.

The Peaucellier Cell is of interest, of course, primarily because it was
the first known means of drawing a straight line without the use of a straight

edge. The Cell, however, demonstrates so effectively the basic facts of the geom-

etry of inversion that one seems to be wasting a valuable opportunity if he does

not construct this linkage so as to make it do more than merely illustrate the

straight line. After we have constructed our Cell, then the radius of the circle

r= i Jof inversion of the Cell is r= j DA —AI. This circle may be drawn on the

board, and it helps immeasurably in understanding the definition of inversion.

Now if we let C or / follow a straight line through D, it becomes evident that

any line through the center of inversion is its own inverse. As indicated by
Mr. Hilsenrath, a circle through D inverts into a straight line, and a circle

not through D inverts into a circle. It is possible, however, to fix the center

and radius of this second circle so that both C and / describe complete circles

instead of arcs, and this illustrates the theorem vividly. Also it is worth

while to arrange that C can draw still a third circle orthogonal to the circle

of inversion. Then we note that I follows the same circle; that is, a circle

orthogonal to the circle of inversion is its own inverse.

As Mr. Hilsenrath effectively points out, the nine linkages described

in his article do not exhaust the subject of linkages. There are a number of

other linkages which are sufficiently simple that they might well be added to

a collection. Two of these are here described.

It is interesting to note that the Peaucellier Cell is not the only instrument

which has the property that the product of the distances of two points from a
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third point is a constant. A simpler arrangement is the inversor by Hart

illustrated in Figure 2. ABCD is a contra-parallelogram and E, F, G, and //

are the mid-points of the sides. Now it is evident from the figure that:

EG=FH=^AC
EF=GH=^DB

It is also evident that A, D, B, and C are concyclic. Therefore, by Ptolemy's

theorem,
AC DB+AD BC=AB DC

But AD = BC and AB = DC
2 2

.-.AC DB =AB—AD

V2AC HDB =K(AB —AD )

2 2

.\EG-EF = 34(AB —AD )= a constant

Therefore, if we fix the point E, and F describes a circle through E, then G
draws a straight line. That is, exactly the same things that are accomplished

by the Peaucellier Cell are also accomplished by this instrument. It is not

actually necessary that E, F, G, and H be the mid-points of the sides of the

contra-parallelogram. It is only necessary that they lie on a straight line

parallel to AC.
An interesting variation of the above linkage is had by fixing the side

AD and letting H be the marking point. A variety of curves can then be drawn,

depending on the ratio between the sides AD and AB. If we now attach a Peau-

cellier Cell to the linkage so that the point connecting the long sides of the

Cell is fixed at E and the inner point of the rhombus is attached to H, then

the outer point of the rhombus evidently draws the inverse of the curve

described by H. (As shown above, a second contra-parallelogram could be

used instead of the Cell with the same results.) A very interesting special case

of this linkage is represented in Figure 3. Let the contra-parallelogram be

constructed so that AD : A B :: v 2 : 1. AD thus becomes the long side, and

E and H are the mid-points of AD and BC respectively. Let AD be the fixed

side. It can be proved by analytical geometry that when this linkage is

deformed the locus of H is a lemniscate. Now if a Peaucellier Cell is attached

to the points E and H, then J describes the inverse of the lemniscate. That
is, J describes an equilateral hyperbola.


