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The problem of finding a one dimensional potential field which gives

a one dimensional wave function exactly analogous to that found through

the solution of the appropriate three dimensional Schrodinger equation

might offer a useful approach to chemical bonding approximations. In

the following treatment such functions will be developed for any s or p
state of a hydrogen-like atom or ion.

The ground state wave function for the hydrogen atom is

* = exp ( - r) (1)

where r represents the radial distance from the nucleus as measured in

atomic units (1). The normalizing constant has been omitted from eq. 1

since its inclusion is unnecessary for the present discussion. The one

dimensional analogue of eq. 1 is

* = exp(-|x|)- (2)

Equation 2 must satisfy the one dimensional Schrodinger equation which

when expressed in atomic units is

E (3)- Yz cP* + V *
dx2

for some potential function V. The potential function may be written as

the sum of two contributions, V = Vo + V*. Vo is its form at the nucleus,

x ~ 0, and V* is its form for x + 0. In addition the potential function

must be such that as
|
x

|

-> oo, V -» 0, and must not be zero everywhere.

The dimensionless electronic energy associated with Is state for

the hydrogen atom is E — —Vz \ therefore, the potential function must
vanish at all points other than at the nucleus. To determine its nature

at the nucleus multiply eq. 3 by dx and integrate the expression,

d2 * dx +

dx2

V^dx E * dx (4)

between the limits — e and + e where e is an infinitesimal interval of

length on either side of the nucleus. Let e approach zero. Since * is well-

behaved, it is finite at the nucleus; therefore, lim
e->0

d2^ dx, becomes A f d "*"
] , the change in the slope of the

^ dx vanishes. The
—€

quantity,

dx2 d x

wave function in passing through the origin in a positive direction. For

the wave function, exp ( — |x| ), A f d *]= — 2. Consequently, it is

Idle J

necessary that
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lim I V * dx = * (O) lim V dx =— 1

e-» O J -e e-^oj -e
(5)

The conditions that a function, f(x), be zero for x + and that

+ 00

f (x) dx = — 1 defines a negative Dirac delta function (2) of unit
—oo

strength placed at the origin. For the one dimensional Is state for the

hydrogen atom, V = — 5 (x). Table 1 summarizes those potential func-

TABLE 1

One Dimensional Potential Functions for the Hydrogen Atom

Energy Wave Potential
Statess Function Function

Is exp (— |x|) -8 (x)

2s (2— |x|) exp (— |x|)

2

l -6 (x)

2 (2— |x|)

2p x exp (— |x|)

2

1

2 |x|

3s (27 — 18 |x| + 2 |x|
2
) exp (— |x|)

3

4 (6- |x|)

81 — 54 |x| + 6 x2

-5 (x)

3p (6 — |x|) x exp (— |x|)

3

2 |x| — 7

18 |x| — 3 x2

tions that yield the correct one dimensional Is, 2s, 2p, 3s, and 3p wave
functions for the hydrogen atom. It is interesting to note that each of

these potentials may be described as the sum of a set of rectangular

hyperbolas, each member of which has its vertical asymptote at a node

of the corresponding wave function.

Frost (3), (4), (5) has employed the Dirac delta function model to

treat one electron atoms, diatomic molecules, and aromatic systems. The

advantage of his model is that the linear combination of atomic orbitals

is an exact solution of the Schrodinger equation. With this model correct

united atom and separated atom electronic energies are realized for B./

;

in the case of aromatic nuclei it predicts excitation energies, resonance

energies, and ionization potentials for the pi electrons. The disadvantage

of the model is inherent in the fact that inter-electronic interactions are

not treated, and in the case of diatomic molecules the nuclear repulsion

term must be modified in order to obtain the desired minimum in the

potential energy curve. It should be stated here that Frost (6) conceived

the delta function model through coulombic considerations and not in the

manner presented in this paper.

In this next section the general problem of an electron moving in a

field that is described by three delta functions will be discussed. The

potential function is of the form
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V = g 5 (x +_R) + go 8 (x) + g S (x — R) (6)

2 2

where g and go are the delta function strengths which may be positive

or negative and R^ in atomic units represents the displacement of the

2

delta function from the origin. The appropriate wave function can be

represented as a linear combination of atomic orbitals having the form

* = A exp (-c |x + R|) + B exp (- c |x|) + C exp (-c lx-R|) (7)

I 21 I 2 I

except at the points, + R and zero. The energy is given as E = — c
2

.

T T
In order to solve the wave equation is is necessary to apply the delta

function condition at each delta function. This condition is outlined below

for the point + R.

f
RA +—y2 d2* dx

dx2

R/ 2_

RA +

g 8 (*

E/o.

R) * dx

2

f
R
/, +

|
E * dx

J

y2 A fd *1+ g* (R) =
2

dx

(8)

(9)

R/2

Application of the above condition at each of the three points leads to

the following secular equation for a non-trivial solution,

g + c g exp (

—

cR) g exp (— cR)

2

go exp (

—

cR) g + c go exp (

—

cR ) =0 (10)

g exp (— cR) g exp (

—

cR) g + c

Equation 10 reduces to the equality that

exp (— cR) = (g + c) (g + c) (11)

g (go— c)

with the values for the normalizing constants expressed in terms of A
given as

C = A
'

(1 + c ) exp (+ cR) + exp (— cR)
'

B = —

A

g
^2 X (12)

If the negative sign in eq. 11 is adopted, the solution reduces to the

nodal (higher energy) solution of the symmetrical two delta function

model discussed by Frost (reference 4) . When the positive sign is assumed,
non-nodal possibilities result, the forms of which depend upon the relative
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magnitudes of the delta function strengths, g and g„, and the value of the

parameter c. The permitted values of g,go, and c can be determined

through the analysis of the inequality,

< (g + c) (go + c) < 1

g (go— c)

The results of this analysis are summarized in Figure 1 which was con-

structed using the fact that for a non-nodal solution the ratio

* (0) = — 2g f (g + c) (go + c) (14)

* (R) go + c { g (go — c)

must be greater than zero; therefore g must be negative. In the

go + C

figure the delta function strength g is plotted as abscissa in units of

the parameter c while the delta function strength g is plotted as ordinate

in the same units. Within the allowed areas are sketched the forms of

the wave functions.
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Figure 1. Regions of Existence of Non-nodal Wave Functions for the Three Delta

Function Model.


