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Three dimensional (XYZ) space with rectangular coordinates may
be radically projected upon a unit sphere in 4 dimensional (xiX2XsX4)

space by means of the formulae

X Y
Xi = -^z——————=-=-77- xa

[R2+X2+Y2+ Z2]
1
/* [R2-j-X2+Y2-fZ2]*

(1)

Z R
X3 ——

—

ZZ Z7, „„_ ~ X4
[R2+X2+Y2+ Z2]% [R2+X2+Y2+Z2]%

The unit sphere S* in four-space may then be stereographically

projected upon spherical 3-space with (xyz) coordinates by means of

the formulae

2Rx
Xl ~~

R2 + X2 + y2 + Z 2
^ ~

(2)

2Rz
Xi =

2Ry

R2 + X2 + y2 + Z2

R2-_ x2_y2_ Z2

R2 + X2 + y2 4- Z 2 R2 _|- X2 + y2 -j- Z2

These formulae (2) are the generalization of the standard formulae

for stereographic projection, and it is seen that the coordinates (xyz)

represent a set of parameters for the unit sphere S4.

Combination of (1) and (2) yields the relations

(3)

and

R X R y R Z R2_x2_y2_z 2 R2

2R R+ [R2+X2+Y2+Z2]*

Y
(4) x __ v __ —

R+[R2+ X2-f-Y2+Z2]Va' * ' R+ [R2+X2+Y2+ Z2] %»

R+ [R2+X2+Y2+ Z2]% .

The rotations of the four-dimensional sphere St constitute the group

of (proper) quaternary transformations of the variables (xix2x3x 4 ) that

are linear and homogenous and whose coefficient matrix A=[aik] is

orthogonal: AA' = 1, the dash meaning transposition of rows and

columns of the matrix. The relations (1) show that they induce linear

fractional transformations of the quantities (X/R, Y/R, Z/R) with

coefficients which are components of the corresponding quaternary
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orthogonal matrix. These transformations are

X auX'+aaY'+asiZ'+a^iR^ Y a,aX'-f a 21Y' + a32Z'+ a«R

~R
~ z

ai«X'+aMY'+aMZ'+ a«R' ~R anX'+a^Y'+ anZ'+ a^R

(5)

Z _ ai3X'+ a 23Y'+ a33Z'+ a43R

~R
_

a 14X'+a24Y'+ a 34Z'+a44R
'

It would have been possible to use homogeneous coordinates instead

of (XYZ); then the quaternary orthogonal transformations of S« would

have induced the same transformations of these, but for a factor; the

geometrical significance that follows below would, however have been

less apparent.

The transformations (5) have the property that they leave invari-

ant the quadric R2-f-X2-f-Y2+Z2 which may be regarded as funda-

mental quadric for the establishment of a metric in the (XYZ) space.

Since this is a positive definite quadratic form, the metric must be

elliptic. The (XYZ) space subject to the group of transformations (5)

therefore has an elliptic metric impressed upon it.

The relations (2) show that the quaternary orthogonal transforma-

tions of (X1X2X3X4) also induce a group of transformations in spherical

(xyz) space. These are

2aux'+2a21y'+ 2a3iZ'+ a« (R2_x'2_y'2_Z '2

)

(6)
2a 14x'+2a 24y'+2a34z'+(a44+l)R2+(l—a44)(x'2+y'2+ Z'2)

y =
z =

with similar expressions for y and z. They are clearly not linear, and
in fact are easily shown to be inversions. The coefficient matrix A does

not, however exhaust the inversion group in (xyz) space, since the

fundamental invariant of the operations (6) is R 2+

x

2+y 2 +z 2
. The

group which leaves this expression unchanged is called the spherical

group, a subgroup of the full (proper) inversion group that has the

property of transforming socalled diametral points into similar points.

Diametral points are pairs of points lying upon euclidean straight

lines through, and separated by, a fixed point 0, and so that the

product of their (euclidean) distances from is R 2
.

The transition from the spherical (xyz) space to the elliptic (XYZ)
space is by means of the formulae (4) which were obtained through
the medium of the unit sphere S4 in four space. The use of four

dimensional space can however be avoided by projecting stereograph-

ically every plane through upon a sphere of radius R with as center;

then moving the sphere at right angles to this plane by a distance R;

then radically projecting the sphere back again upon the same plane.

In this manner diametral points are brought to visible coincidence as

shown in Fig. 1. The identification of diametral points represents the

conversion of spherical to elliptic space, and it is this transition

together with the use of special coordinates (XYZ) in the (xyz) space

that permits the visualization of four dimensional rotations.
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Great circles on the unit sphere S* in 4-space are mapped by this

procedure upon circles in (xyz) space through diametral points, and

therefore also diametrically opposite points of the sphere Sr of radius R
and center in this spherical space, or upon euclidean straight lines

through O. (The latter are special circles in (xyz) space). Fig. 2

shows that non-intersecting circles through diametrically opposite points

of Sr are linked. As these are the images of non-intersecting great

circles upon S*, this property of the great circles on S4 becomes intuitive.

Elliptic planes are mapped upon spheres through great circles on

Sr, and the original (XYZ) coordinates which were rectangular, map
upon a triple set of circles terminating in the ends of Cartesian

coordinates axes on this sphere. Fig. 3 shows a plastic model of the

(xyz) coordinate planes with the images of the original (XYZ) co-

ordinates scribed upon them. Fig. 4 shows a perspective drawing of the

Fig. model of the coordinate planes (See text)

same set of lines (circles) and Fig. 5 shows the new coordinates in the
(XY) plane. The correlation between the numbers and the coordinate
lines, by means of the tangent relationship given here indicates that the
sphere Sr assumes the role of an "infinitely distant" plane. The great
circles on Sr assume the role of "infinitely distant" straight lines on the
"infinitely distant" plane. Now there are no such entities as "infinitely

distant" lines points or planes in elliptic geometry so it will be preferable

to denote these by the adjective "inaccessible' and thus speak of an "inac-

cessible line" lying in an "inaccessible plane". Actually, the elliptic

distance between two points (X1Y1Z1) and (X2Y2Za) is given by

R2+X
1
X

2
+Y

1
Y

2
+Z

1
Z

2

d =arc cos—— .

] 2 [R 2+X2+Y2+ Z2]y2 [R2+ X2+ Y2+ Z2]%

so that the "inaccessible plane" has an elliptic distance of W2 units of

length from the origin, the point O.
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The coordinate lines are seen to meet in a point on the inaccessible

plane and thus give the impression of being parallel lines similar to what
is considered parallel in the euclidean space. But it should be observed

that they do not possess the property of euclidean parallels that the inter-

cepts on the set of common normals are of equal length. Upon expansion

of Sr so that R > oo, they degenerate into euclidean parallels,

and therefore will be referred to as "parallels of the first kind". The
reason for the term "first kind" will appear below.

There are only two shapes of (real) quadrics in elliptic space, the

hyperboloid of two sheets and the ellipsoid being essentially identical.

Algebraically this follows from the inertia property of quadratic forms,

but in the present model of the elliptic space it is easy to see the reason.

In Figs. 6 and 7 are seen respectively the ellipsoid and the hyperboloid

of two sheets. Owing to the identity of diametral points the ellipsoid

in Fig. 6 must comprise another circuit outside Sb and inverse with

respect to it. Now effect a transformation of the spherical group which

transforms the (euclidean) plane that halves the ellipsoid into Sr

The left half of the ellipsoid then becomes the right hand sheet of the

hyperboloid in Fig. 7. The other sheet is obtained from the outer

circuit of the ellipsoid. In two dimensions, bicircular quartics behave

in analogous manner (2), and assume the role of (sphero-) conies there.

Algebraically, these shapes correspond to the following quadratic forms

reduced to principal axes

:

X 2+Y 2 + Z 2+ R2= (imaginary quadric)

X2+ Y2+Z2—R2=o (oval quadric)

X 2 -fY 2—

Z

2—

R

2— (ring shaped quadric).

That the second and third quadrics should differ from one another is

obvious on grounds of connectivity alone. In euclidean space these con-

nections between the different configurations are not so easily surveyed.

If the transverse generating circles of a torus intersect Sr

at right angles, the torus represents a hyperboloid of revolution of one

sheet. Fig. 8 shows one transverse generating circle being taken around

the equator circle of Sr. The equation of the torus is seen to be

(7) x = (a-fpeos \p) cos 0; y=(a+pcos^) sin </>; z=/> sin <//,

where a 2= R-+p 2
. Elimination of \p and <p yields

p 2 (4X 2 + 4y2) 4R2Z 2

[R2— X2— y2_ z2]2 [ R2_ x 2 _ y 2 _ Z 2 ] 2

By formulae (2) this immediately transforms to

X2 -f Y2 Z2
(8) -— — = 1,*

R4/p2 R2

which proves the statement. The quadric (8) in elliptic space is a

quartic surface in inversion space (spherical space). The reguli of this

so-called Clifford surface are elliptic straight lines, euclidean circles in

inversion space, oblique generator circles of the torus illustrated in
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Fig. 9 and the plastic model shown. There is a left and a right regulus,

but only one is shown. Which of the two is denoted by left and which

by right, is of course immaterial.

The entire elliptic space can be filled with Clifford surfaces with a

common generator axis, corresponding to increasing radii of transverse

generator circles. By consideration of individual sets of reguli it is

seen that the surfaces can be generated by translation of points along

either "right" or "left" regulus lines. During such a translation a

"right" slides along a "left" regulus, or a "left" along a "right"

regulus to generate the torus. Such a movement is called a "Clifford

Translation". All points in the elliptic space move along elliptic straight

lines during such a translation.

In euclidean space any two non-intersecting straight lines have

either one common normal or an infinite number of them, and in the

latter case the straight lines are called "parallel". In elliptic space two

elliptic straight lines have either two common normals or an infinite

number of them, and in the latter case the intercepts of the normals be-

tween them are of equal elliptic length. This means that two such lines are

equidistant in elliptic measure, and that is exactly the distinctive prop-

erty of the reguli of a Clifford surface. Such lines are called "Clifford

Parallels" in view of the resemblance to euclidean parallels they bear in

respect of distance. Eduard Study (3) called them "paratactics" and dis-

tinguished "right" and "left" paratactics, according as two such lines

belonged to one or the other set of reguli of a hyperboloid of one sheet

(the lines would of course be suitably oriented—reference to this will be

made below). The designation "paratactics" is more suitable than

"parallels" because upon indefinite expansion of Sr so that R > co,

the parallels of the first kind described above become euclidean parallels,

but the Clifford Parallels do not. It is appropriate, therefore to name
the Clifford parallels "of the second kind".

Given any two elliptic straight lines, Li, L 2 , it is possible to find a

transformation of the elliptic space (and hence also of the spherical

model) which carries the intersection of one of them, L2 , say, and one of

the common normals of La, L 2 , into the fixed point O and at the same
time to transform the elliptic plane determined by the normal and L,

into a euclidean plane. L 2 will then be a euclidean straight line (as

well as elliptic), and the same applies to the common normal. Li will

be represented by a circle through diametrically opposite points of Sr

Fig. 10 shows this configuration in such a position that the common
normal (of Li and L 2 ) is transformed into the z-axis (which is also

the Z-axis) while L 2 is a euclidean straight line passing through
diametrically opposite points of the equator of Sr (which represents

an inaccessible line). If in this configuration the angle a=/3, the two
lines Li and L2 are Clifford parallels, and they will then have an infinite

number of common normals, the elliptic length of the intercepts between
them having the common length a. It will be noticed that unless two
straight lines are Clifford parallels, the intercepts on the two common
normals are not equal in elliptic length.
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Another example of a pair of Clifford parallels visible in Fig. 10

is the limiting- case where a= ir/2, represented e.g. by the Z-axis and the

equator circle. Such a pair of special paratactics or Clifford Parallels

will be called a Study Line cross, being a generalization of what Study

called a "line cross" (3) namely, a straight line in the finite part of

(euclidean) space and that inaccessible (infinitely distant) line which

crosses it at right angles. In our case a general Study Line Cross will

be represented by a pair of circles lying in (euclidean) planes ortho-

gonal to each other and having one (and consequently infinitely many)
shortest distance of length v/2. The line cross will be used in the

development of the kinematics below.

If in the transformation formulae (6) the following special

coefficient values are inserted:

an=a44=cos a; an=—a«=sin a;a 22=a33=l, and all other coefficients

zero, the matrix |aik| is seen to be still orthogonal, and (6) becomes

(8)

x'= [2 cos a X + sin a (R2-- X2-_ y2 _- Z2)]/N
y'= 2y/N
z'= 2z/N,

where

N = —2 Sin a X + R^ (1 -f COS a) + (1 — COS a) (X2+y2-|_ Z2).

This transformation will be called a "pseudorotation" about a circle of

radius R lying in the (yz) plane, when considered in the spherical or

inversion space. It leaves invariant the circle y 2+ z 2=R2 in the (yz)

plane, which represents an inaccessible line in the inaccessible plane 'S

in the elliptic space. It will be seen from Fig. 11 that the plane deter-

mined by the y and z-axes has been rotated through an angle a, and

this transformation may be generated by a reflection (inversion) in a

sphere making an angle Yz a with the (yz) plane, followed by a reflection

in the origin, i.e. x'=—x, y'=—y, z'=—z.

The rotations of 4-space now become visible as kinematics in elliptic

(XYZ) space or spherical (xyz) space, in either case representable by

our spherical model illustrated in Fig. 3. The transformation (8)

can be illustrated by Fig. 12 which shows how a euclidean plane through

O is transformed into a spherical shell through the equator circle

(elliptic plane passing through inaccessible line represented by equator

circle.) The 6 "simple" rotations of Cartan's "biplan" are seen to be

on the one hand, euclidean rotations of the planes (xy), (xz) and (yz),

and on the other the elliptic rotations about inaccessible lines repre-

sented by circles of radius R in the (yz), (xz) and (xy) planes,

respectively. The last three are obviously pseudorotations in the sense

defined above. These relations are shown in Table I, which shows the

quaternary orthogonal matrices corresponding to these in the second

column, and the geometrical significance in the fourth and fifth columns.

Fig. 13 shows the mechanism of a rotation as well as of a pseudoro-

tation.
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The third column in the table shows what becomes of the matrices

in the second for angle of rotation or pseudorotation of W2. These

matrices are commutative with respect to multiplication and certain

pairs of them multiplied together yield the 4x4 matrices used by Gibbs

to represent quaternion units (1). Thus

Table I. The Six Simple Quaternary Orthogonal Matrices.

Matrix Correspond ng Significance Significance in

'C
-° 90° Rotation in 4-space elliptic or in-

§ DQ
version 3-space

Mi, COSa —sina —1 Rotation in Elliptic and euclidean

sina COSa + 1 o (xiX 2 ) plane Rotation in (xy) -plane

1 1

1 1

Ma COSa -—sina —

1

Rotation in Elliptic and euclidean

1 1 (xiX :J ) plane Rotation in (xz)-plane

sina COSa + 1

1 1

M 23 1 1 Rotation in Elliptic and euclidean

COSa —sina —

1

(x 2x3 ) plane Rotation in (xz) -plane

sina COSa +1
1 1

Mh COSa 0—-sina —

1

Rotation in Elliptic Rotation

1 1 (xix4 ) plane about inaccessible line

1 1 in inaccesshVe plane.

sina COSa + 1 Line represented by

unit circle in (yz)

plane.

M 24 1 1 Rotation in Elliptic Rotation

COSa 0— sina —

1

(X2X4) plane about inaccessible line

o 1 1 in inaccessible plane.

sina COSa +i Line represented by

unit circle in (xz)

plane.

MM 1 1 Rotation in Elliptic Rotation

1 1 (X3X4) plane about inaccessible line

COSa—-sina —

1

in inaccessible plane.!

sina COSa +1 Line represented byi

unit circle in (xy)

plane.

. —

1
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M„(7r/2) x MM(W2) - i =

M 18 (W2) x M 24 (7r/2)

M 23 (7r/2) x M«(W2)

The most general transformation of XYZ space is one which carries

an elliptic straight line into another one. The first may be arbitrarily

chosen and the latter then preassigned. It is possible to lay an elliptic

plane through the given line and one of the common normals, and then

to carry out a pseudorotation about that inaccessible line which joins

points where the given line and the common normal chosen pierce the

inaccessible plane. This pseudorotation is carried out so that the line

and the normal have their intersection in the fixed point after the

operation. These two lines are then both euclidean and elliptic and

they therefore appear as in Fig. 10, and they will be Clifford parallels

if a = P. The given line Li may now be moved into the other L 2 by
first carrying out a euclidean rotation through the angle P, and follow-

ing this by an elliptic rotation through an angle a about the inaccessible

line crossing the axis of the euclidean rotation at right angles. This

pair of operations, i.e. rotations carried out successively about two lines

Fig. 14

of a Study Line Cross is commutative: the elliptic pseudorotation

about the inaccessible line could have been carried out first, and this

followed by the euclidean rotation about the euclidean axis.. Thus, but

for a transformation of the spherical group placing the two lines into

a special position in the space, the given line is moved into the other by
a euclidean rotation about a euclidean axis, followed by a pseudorota-



290 Indiana Academy of Science

tion about an inaccessible axis orthogonal to the first. Or, also, the

most general movement in elliptic space consists of the succession of two

(elliptic) rotations whose axes form, a Study Line Cross.

It will be obvious that the orthogonal rotations in four-space cor-

responding to these operations in elliptic or spherical space will de-

compose in an analogous manner.

The pseudorotation leaves invariant a single infinity of toruses

namely those whose common generator axis is the axis orthogonal to the

pseudorotation. Individual transverse generator circles of each torus

remain invariant as a whole. Thus, this movement is identical with

that of a smokering revolving within itself, and is frequently called a

"vortex motion".

The decomposition of the quaternary rotations into two, about skew
circles on S4 is not the most elementary one. Each rotation may be

seen to be composed of two Clifford translations. It is not difficult to

show that the straight lines of the elliptic space may be oriented so

that the (arbitrarily chosen) right regulus together with the common
axis of rotation form a right handed screw in the conventional sense,

and the left will then be eo ipso oriented so that it together with the

same axis of rotation, whose orientation remains unchanged, form a left

hand screw. Diagrammatically this is illustrated in Fig. 15 where the

common axis of the hyperboloids is thought of as directed out of the

plane of the paper towards the observer, and a positive right as well as

a positive left, generator direction are indicated. The generator circles

are imagined collapsed into the plane as circles.

It is now immediately visible that a euclidean rotation about the

common axis of composed of a negative left Clifford translation, fol-

lowed by a positive right Clifford translation. Similarly, it is seen that

a pseudorotation is composed of a positive left followed by a positive

right Clifford translation.

All the preceding geometrical relations, interesting as they are,

become increasingly signficant in view of the last statement. For, it is

now possible to correlate without trouble the kinematics in elliptic or

spherical space. with the algebraic expressions for quaternary ortho-

gonal transformations. It is well known that the general (proper)

quaternary orthogonal transformations may be represented by the

quaternion formula

(9) |A| [B|X'=AXB, where the A, B, and X are quaternions:

A= ia +ia +ka +a
; lAHCaS+ aS+ aS+ aS] 1^12 3" 4 1234

and smilarly for B, X, and X'. A is the conjugate quaternion, obtained

from A by using —i, —j, —k instead of the positive units.

It is also known that with this representation, euclidean rotations

may be expressed as

(10) |A|2X'-AXA

and the expanded expressions then form the Euler-Rodriques-Cayley
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parametric representation of the ternary orthogonal matric elements.

These are shown in table 2, where it should be observed that

a2+ a 2+ a2+ a2

is the denominator of the other nine elements when the matrix is used

to express the ternary orthogonal transformations.

It is then not difficult to show that the expression

(11) |A|2X'=AXA

is a pseudorotation about the inaccessible line that crosses the axis of

the euclidean rotation AXA orthogonally, i.e. the second elliptic line of

a Study line cross. The angle of this pseudorotation equals that of the

corresponding euclidean rotation. These statements may be proved in

two ways, either by direct calculation, or by first transforming the inac-

cessible line which forms the axis of the pseudorotation into the Z-axis.

This converts the pseudorotation into a euclidean rotation about the

Z-axis, and the proof is then obvious.

Further, one can then see that a transformation such as |A|X'=AX

may be correlated to a positive left translation, while |A|X'=AX then

represents a negative left translation, both in the Clifford sense. Simi-

Table II. Parametric Representation of Rotations and Pseudorotations

General Quaternary Rotation |A| |B|X'=AXB ; A=iai+ja2+ka3+ a4

Euclidean Rotation B = A: |A| 2X' = AXA
Euler-Cayley-Rodrigues Coefficient Matrix:

a2_a2_a 2+ a 2 2 (a a —a a ) 2 (a a -fa a )

.1 2 3 4 1 2 3 4 13 2 4

2 (a a +a a ) —a2+ a2_a 2+ a2 2(a a —a a )1234 12 34 23 14

2(a
i
a3~a

2
a

4
) 2(a

2
a

3
+a

i

a
4

) ~"ai~~a2
+a

3
+a

4
°

a 2+ a 2+ a 2 +a»12 3 4

Pseudorotation |A|*X' = AXA. Axis of this is inaccessible line

crossing orthogonally axis of above Rotation.

_a 2+ a 2_|_ a 2+a2 —2a
]

a
i ,

—2a
]

a
;?

~2a
i
a

4

—2a
j

a
o

a 2—a 2-|_ a 2+ a2 —2a a —2a a

—2a a —2a a a 2+ a 2—

a

2
-f a2 —2a a

l •"> 2 3 12 3 4 3 4

+ 2a
x
a

4
+ 2a

2
a

4
+ 2a

3
a

4

—ai~a2~a 3
+ a

4
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larly, |A|X'=XA is a negative right translation, and |A|X'=XA is a

positive right translation.

The coefficient matrix for a pseudorotation is shown in the lower

part of table 2; it is the parametric representation of a vortex motion.

When these parameters are inserted in (6), the motion is in inversion

space. The geometrical meaning is also easy to deduce, since the

significance of the Euler-Rodrigues-Cayley parameters is well known.

Thus, ai:a 2 :a 3 is known to represent the ratio of direction cosines of the

rotation (or pseudorotation) axis, while —a /[a 2 -fa 2 -j-a 2]^

cotangent of half the angle of rotation.

Table 3 shows the coefficient matrix of a general quaternary or-

thogonal transformation. When the radius of S R is made to increase

indefinitely, there results a parametric representation of all euclidean

movements, i.e. rotations as well as translations.

A difficulty arises here, however, inasmuch as the representation is

in terms of 8 homogeneous parameters with bilinear composition. The
totality of euclidean movements only depends upon 6 essential constants,

so that we have one excess constant.

Eduard Study (2) showed that there is no representation in terms

of 7 homogeneous parameters with bilinear composition for the totality

of euclidean movements, and he assumed that the expression

aibi -j- a 2b 2 + a,b
:
. -f a 4b 4 = 0. Study deduced his result by the aid of

Clifford dual numbers, i.e. complex numbers a + eb for which a and
b are real numbers while e is a unit for which e 2 = 0. The totality of

euclidean movements is then expressible in the following form using

Biquaternions:

(a + eb)~ J (e[ixi+jx 2+kx 3 ] + x*) (a— eb) =

e[ix'i+ jx' 2+ kx' 3 ] + x'4 .

This representation is complete and exhaustive. It is seen that our
limiting process R > oc causes degeneration of pseudorotations into

euclidean translations.
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