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Today, high-speed electronic computers are used in calculations

that would be almost impossible and certainly impractical to do in any

other way. In the field of chemistry, this applies mostly to the calcula-

tions involved in X-ray diffraction, electron diffraction, quantum me-

chanics, and so forth. Some of these calculations actually require many
hours of electronic computer time.

There has been relatively little work done using computers for

calculations which require much shorter periods of time, i.e., for problems

requiring several tedious hours on a desk calculator. Electronic com-

puters not only allow one to perform errorless calculations in the

minimum amount of time, but also the use of electronic computers

should encourage one to reconsider the basic equations used in his

research to see whether or not he could use the more exact, but usually

more mathematically complicated, fundamental equations to increase

the accuracy of his results. This sometimes involves merely including

more terms in the calculations or using more experimental data, or

both. Also, certain statistical routines can usually be included to obtain

the statistically best results.

As an example, in our research a least-square routine has proven

to be a powerful tool in the calculation of the consecutive formation

constants of inorganic complexes. This technique can be made applicable

to other equilibrium processes in which it is desired to calculate all the

equilibrium constants.

Let us consider an equilibrium process involving the consecutive

addition of a group X to a central metal ion M. This can be represented

in the following way:

M + X = MX where [MX] = kt = K,

"[M] [XT
MX + X = MX 2 where [MX] = k 2

[MX] [X]
or [MX] = kik2 = K 2

"[M] [X] 2

etc.

For example, the metal ion may be Cu+ +
, Cd+ +

, Ni+ +
, etc., and the

ligand, X, may be monodentate CI", NIL, pyridine, etc., or a polydentate

ligand, X, may be monodentate Ce-, NIL, pyridine, etc., or a polydentate

number of four of these ligands can be coordinated to the metal ion.

The method to be discussed for the calculation of these formation

constants involves the use of a power equation in which the coefficients

of the variable are the overall formation constants of the complexes.
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Fo(X) = ko + Ka[X] + K2[X] 2 + K 3 [X] 3 + K 4 [X] 4

(1)

This F (X) function is calculated from polarographic data and

includes the half-wave potential of the simple metal ion, the half-wave

potential of the complexed metal ion and the ratio of the diffusion

currents.

F„(X) = antilos
{ „

«
91 [ (E,„). - (E,„). ] + log-gj-} (2)

This relationship involving polarographic data was first derived

by DeFord and Hume in 1951 (i) by combining the Nernst equation with

the Ilkovic equation and making simplifying assumptions concerning

activities and concentrations of the various species in the region of the

mercury drop.

The formation constants themselves are usually determined by a

graphical technique. The graph of F„(X) versus the concentration of

the complexing agent has an extrapolated zero intercept which is k
,

the formation constant of the zeroth complex. Of course, k„ has a

theoretical value of 1.0 and this then serves as a check on the data.

This value of the intercept is subtracted out and the result is then

divided through by the concentration of the complexing agent to get a

next lower order equation. This Fi(X) function is then plotted versus

the concentration of the complexing agent and the extrapolated zero

intercept is the formation constant Ki of the first complex, MX.

Fo(X) -ko = Kt + K,[X] + K :) [X] 2 + K 4 [X] S = F,(X) (3)

[X]

This process is repeated until all the constants have been determined.

Fx(X) - K, = K 3 + K 3 [X] + K ( [X] 2 = F,(X) (4)

[X]

F a (X) - K 2 = K 3 + Ki[X] = P,(X) (5)

[X]

F,(X) - K3 = K, = F 4 (X) (6)

[X]

It is important to realize that there is an easily recognizable rela-

tion between the order of the F(X) equations (or the shapes of their

plots) and the maximum number of complexes which can form. The

last equation for the highest complex does not contain the concentration

of the complexing agent and thus F,(X) should be a constant and

independent of concentration. It can be considered a straight line hori-

zontal to the concentration axis. The next to the last curve is a straight

line of positive slope. The next lower curve represents a quadratic

equation, the next a cubic and the last curve a quartic equation. (We
are still assuming the presence of four complexes in the above dis-

cussion.)

Another point which should be mentioned is that the uncertainty

in the values for the various constants increases as one goes from the

first formation constant to the last. This is partly due to the uncertainty

in the values of the extrapolated intercepts, since they are used in the

later calculations, and partly due to the fact that the concentration of

the complexing agent is reintroduced in each step of the calculations.
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The obvious point to begin a least-squares calculation is with the

Fo(X) equation involving the formation of the zeroth complex, since

the data involved in this calculation are the most accurate. Also, if the

earlier constants can be calculated more accurately, since they are them-

selves used in the calculation of the rest of the constants, this will tend

to increase the accuracy of the remaining constants.

Notice (Equation 1.) that the F„(X) equation contains all the

constants. Theoretically, therefore, by solving for the coefficients of

just this one quartic equation from the data by the method of least-

squares, it should be possible to obtain all the formation constants

directly. It will be explained later why this does not always work out in

practice.

The least-squares routine (IBM 6.0.006) used in this work was
originally programmed for the IBM 650 by a research group at General

Electric and is made available to users of IBM 650's throughout the

country by a central library maintained at the headquarters of the IBM
Data Processing Division.

This routine requires about two minutes to calculate all the least-

squares best coefficients for the linear, quadratic, cubic and quartic

equations for any number of data points up to 100. That is, the program
is set up to try automatically all four orders of equations with each

set of supplied data. It also calculates y values for each given x value

using the least-squares best coefficients in each order equation. These
last data are useful in estimating the standard deviations of the results.

The experimental data to be considered as an example in this discussion

are from an actual metal-ion complex system and the authors are

indebted to Mr. Frank A. Guthrie for his permission to use his data in

this paper.

The procedure is straightforward. The values of F (X) and Fi(X)
at different concentrations of the complexing agent are calculated accord-

ing to equations (2) and (3), respectively. These functions are then

first plotted graphically versus the concentration of the complexing

TABLE I

Calculated Least-Squares Coefficients for F (X) vs. [X] Data
Assuming Linear, Quadratic, Cubic and Quartic Equations.

Equation Coefficients (Formation Constants):

Data Type k K x K, K, K 4

Fo(X) linear 0.3573 46.21

quadratic 0.9706 21.56 157.5

cubic 0.9860 20.52 173.8 -68.44

quartic 0.9157 27.82 -29.85 1937 -6358

F,(X) linear 16.58 215.7

quadratic 20.47 144.8 171.8

cubic 21.19 115.9 357.9 -299.0

F2(X) linear 145.4 178.6

quadratic 121.6 249.0 -36.31

F2 (X) linear (constant) 174.4 3.723
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agent to obtain an approximate value of the extrapolated zero intercept

for k and Ki, respectively. (k should theoretically be 1.0 and in our

example Ki is approximately 20.) The F„(X) data are then used in the

IBM 650 least-squares routine. The results of the least-squares calcula-

tion of the F (X) data are then checked to see how the k and Ki
constants agree with the graphically extrapolated values of 1.0 and 20.

The value of K^ should also be noted and kept for future comparisons.

Assuming that four complexes are present, k„ and Ki should fit

the least-squares coefficients of the quartic equation best. The least-

squares results for the quartic equation indicate that k„ is 0.9157 and

Ki is 27.82. (See Table I.) However, if we consider the results of all

the least-squares calculated coefficients, we see that the values for k
and Ki of the cubic equation approach the expected values more closely.

(The value of Kj is also more reasonable.) Therefore, we may begin

to suspect that only three complexes are formed.

This, then, is an important step of the procedure: If the graphically

extrapolated values of k„ and Ki fit the least-squares coefficients of the

quartic equation best, then there will be four and only four complexes. If

the values fit the cubic coefficients best, then only three complexes are

formed; if the quadratic coefficients fit best, then only two complexes are

indicated; and if the linear gives the best fit, then only one complex is

indicated.

In our example, k„ and Ki fit the cubic equation best and therefore

only three complexes are indicated. Furthermore, the results of the

next calculation can also be used to support this. When the Fi(X) data

are used in the least-squares calculation, the results indicate that these

data best fit a quadratic equation with a value of 20.47 for Ki. (See

Table I.) This then confirms the fact that only three complexes can

be present since a next lower order equation is theoretically expected

and the values of the constants check with the graphical results. The

quadratic coefficients for the Fi(X) data give 144.8 for K2 and 171.8

forK3 .

The calculations can then be continued with a definite knowledge

of the shapes of the remaining curves and also the approximate values

of the remaining constants. In our example, there are only two more
lines. One of these is linear and the other is constant (i.e., horizontal).

The intercept coefficient, K_, obtained from the linear equation coefficients

calculated from the F2(X) data by the least-squares method is 145.4,

which agrees well with the value of 144.8 obtained from the K_> coefficient

of the quadratic equation for the Fi(X) data. The K 3 coefficient of the

quadratic Fi(X) equation is 171.8; the K., coefficient from the linear

Fa(X) equation is 178.6. Both of these agree well with the intercept

coefficient, K 3 = 174.4, for the approximately horizontal F 3 (X) line.

However, in this case it is undoubtedly better to use an average of the

constant values of F3 (X) rather than the intercept value, for there is

no point in magnifying any false trend in the supposedly constant values

of F3 (X) by extrapolating to zero concentration. The mean value for

F 3 (X) is 177.3, and we shall take this as the statistically best value for

K.,. Ideally, since K 3 is the formation constant of the highest complex,

the value of K± should be zero. Actually, the values of K 3 from the F 3 (X)
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calculations do exhibit a slight slope and the least-squares best value of

K4 is 3.7, which is certainly close enough to zero to be within the limits

of experimental error.

Estimation of the standard deviations of the various coefficients

of the polynomial equations is a fairly complex statistical problem and

will not be discussed here. Since values of the lower coefficients are

used in calculations of the higher coefficients, the errors will be cascaded.

It was mentioned previously that it should be possible in theory

to obtain all the values of K„, the formation constants, from the least-

squares best coefficients of the F„(X) data, but that this did not work
out in actual practice. The reason for this is that certain 'assumed

constants' such as activity coefficients and liquid junction potentials are

not actually constant, but gradually change when the concentration of

the complexing agent changes. These changes in 'assumed constants'

cause the half-wave potential to shift. But since the total observed

half-wave potential shifts are used in calculating the formation con-

stants, the apparent values of these formation constants will be different

when calculated from data in widely different concentration regions.

Self-consistent and concordant results are obtained only when data in

a more limited concentration range are used in the calculations This

then serves as an explanation for the disagreement in the values of

the higher least-squares coefficients in the F„(X) calculation and the

final calculated results.

We have chosen to include data only from concentration ranges where

a particular complex is present in significant amounts in the calculation

of the formation constant of that complex. Thus, only the data from

the ten lowest concentrations were used in the final calculations of k .

Data from the lowest fourteen concentrations were used in the final

calculation of Ki, while data from the eleven most concentrated solutions

were used in the final calculation of both Kj and K 3 .

Another point also becomes obvious when one applies a statistical

treatment to data from which a number of constants are to be evalu-

ated. This is that a larger amount of raw data (in this study, half-

wave potentials at a given concentration of complexing agent) should

be used than are usually used in making such calculations. For example,

half-wave potentials at six different concentrations would provide only

two degrees of freedom if four independent constants are to be evaluated,

so the results would show relatively large standard deviations. In most
published applications of this method, a total of only about eight to

ten points are used, which certainly would be the minimum acceptable,

even if all points were used in the calculation of all the formation

constants, which is normally not the case. In the results discussed here

21 concentrations are used and at each concentration the half-wave

potential is the average of at least four and sometimes five or six

half-wave potentials. We feel, then, that our results are relatively

statistically reliable.

In summary, the reliability of calculated consecutive formation

constants of complexes can be greatly increased by applying statistical

techniques. The use of electronic computors allows the necessary

calculations to be made quickly and easily and thus encourages applica-
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tion of mathematical relationships that would not ordinarily be used

because of the great amount of time that would be involved in doing

the same calculations with a desk calculator.
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