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Abstract

Lipoprotein particles were examined in thin sections of rat liver. Particles within

cisternae of endoplasmic reticulum and in vesicles at one face of the Golgi apparatus were
larger than those in free secretory vesicles and in vesicles at the opposite face of the Golgi

apparatus. On this basis, the Golgi apparatus face containing large particles was identified

as the forming face, whereas that face associated with vesicles containing the smaller

particles was identified as the maturing face.

Very low density lipoproteins (VLDL) of serum transport

triglycerides (8, 16) and serve as precurse molecules to lipoprotein of

other classes (1). Of the two sites of VLDL synthesis, liver and
intestine, the liver is quantitatively the most important (18, 23).

In electron micrographs of liver cells, lipoprotein appears as

osmiophilic particles within smooth endoplasmic reticulum and in

vesicles of Golgi apparatus (3, 5, 7). The particles isolated from frac-

tions rich in Golgi apparatus have the electron microscopic appearance

and immunological and chemical properties of serum VLDL (2, 9, 10).

The lipoprotein enters Golgi apparatus vesicles from smooth endoplas-

mic reticulum via tubular connections (2, 12, 13, 22). Yet, vesicles and
tubules which contain lipoprotein particles are observed at both faces

of individual dictyosomes (3, 7). Released secretory vesicles migrate

through the cytoplasm to the cell border at the sinusoidal space

(5, 7). Vesicle membranes and plasma membrane then fuse to release

lipoproteins to the circulatory system (5, 7). We report observations

on relationships between vesicles at each of the two dictyosome faces,

especially as they regard distinguishing between vesicles of the forming

face and those of the secreting face.

Materials and Methods

Male rats (Holtzman Co., Madison, Wise), 200 to 300 g were given

a standard diet (Purina Laboratory Chow) and drinking water ad
libitum. The rats were killed by cervical dislocation, and the livers were
drained of blood and excised. Pieces of liver (1 mm3

) were fixed for

16 hours in osmium tetroxide (1% in 0.1 M sodium phosphate buffer,

pH 7.2) at 4° C, rinsed in buffer, dehydrated through an acetone series

and embedded in Spurr's (19) epoxy resin mixture. Thin sections were
mounted on formvar-covered, carbon-coated grids, stained with lead
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citrate (17) and viewed with a Philips EM-200 at 60 KV. A 54,864

line-per-inch diffraction grating replica (Ladd Research Industries,

U.S.A.) was used as the magnification standard. Diameters of

lipoprotein particles were measured from the projected images of elec-

tron image plates at a magnification of 76,200.

Figure 1. Electron micrograph of a rat liver Golgi apparatus (GA) and neighboring

smooth endoplasmic reticulum (SER). Vesicles at one face (SV.,) have a light

matrix and the larger, disperse lipoprotein particles. Vesicles at the opposite face

(SV
2
) have a dark matrix and are densely packed with smaller lipoprotein particles.

At the arrow, a smooth endoplasmic reticulum tubule is continuous with a light

matrix vesicle. X 27,000.

Figure 2. Two free secretory vesicles (double arrows) with a dark matrix and contain-

ing small lipoprotein particles. The vesicles will eventually fuse with the plasma

membrane (PM) to release lipoprotein secretory product into the space of Disse

(sd) X 27,000.

Results

In whole tissue, vesicles containing osmiophilic lipoprotein particles

occurred at both faces of the dictyosome (Fig. 1). At one face the
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vesicles were dilated and the particles were dispersed within a light

matrix (SV
X ). At the opposite face, the particles were densely packed

in undilated vesicles containing an osmiophilic matrix (SV2 ). Vesicles

located between the two dictyosome faces were intermediate between

these two extremes. Vesicles free in the cytoplasm (Fig. 2) were
morphologically similar to the dictyosome vesicles containing the

densely packed particles (SV2 ).

Size of lipoprotein particles also differed across the dictyosome.

Particles in the dilated vesicles at one face averaged only slightly

smaller than particles within the smooth endoplasmic reticulum (Table

1). Particles in vesicles at the opposite face were considerably

smaller and corresponded most closely to the particles in vesicles free

in the cytoplasm. Not only does lipoprotein particle diameter decrease

across the stack of dictyosome cisternae, but the particles in vesicles

released from the dictyosomes appear smaller than those in vesicles

still attached to the mature face (Table 1).

Table 1. Lipoprotein particle diameters in rat liver cell components.

Mean Particle Standard

Cell Component Diameter a) — Deviation

Smooth endoplasmic reticulum 590 ± 70

Golgi app. light matrix vesicles 550 ± 70

Golgi app. dark matrix vesicles 465 ± 70

Secretory vesicles (free) 420 ± 60

Discussion

In the process of membrane transformation and product compart-

mentalization at the Golgi apparatus, input of membrane and product

occurs at or near the forming (proximal) face; maturation of membrane
and compartmentalization of product occurs across the stack to the

secreting (distal) face (12, 14, 15). Thus the proximal and distal faces

of dictyosomes can be identified by recognizing either product com-

partmentalization (functional polarity) or changes in cisternal

morphology (morphological polarity) from the proximal to the distal

face. In cells in which an electron-dense secretory product appears in

large secretory vesicles at only one face of the dictyosome, the faces

are identified easily. In systems which secrete mucopolysaccharides,

like the Brunner's gland of the duodenum (20), the dictyosome is ob-

viously polar. In other cell types (4, 6, 12, 14, 15), changes in mem-
brane thickness and/or staining intensity have been used to distinguish

one face from the other.

In the liver, secretory product is visible in vesicles associated with

both faces of the dictyosome (Fig. 1). A complex and hitherto not

reported functional polarity is described which provides both a qualita-

tive and quantitative basis for the indentification of the forming and
secreting faces of the liver dictyosome.

Comparisons of lipoprotein particle concentration and dimensions
and vesicle matrix density reveal a clear polarity across the stacked
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cisternae (Fig. 1, Table 1). The dictyosome vesicles with small
particles and a dark matrix are similar to the free secretory vesicles

with respect to particle size and morphology. Thus the secreting face
of the dictysome is that face associated with densely packed vesicles

with small lipoprotein particles and a dark matrix. The forming face
has dilated vesicles with a light matrix and the larger, more disperse
particles, similar to those in smooth endoplasmic reticulum.

To ascribe different functions to the forming face vs. mature face

vesicle, it will be important to isolate each vesicle type. Morphological
differences between vesicles not only distinguish the forming face from
the mature face in whole tissue, but may help to identify the origin of

secretory vesicles observed after cell fractionation (11).

We reported previously a potential role of secretory vesicles in

product glycosylation in rat liver (11) and in pollen tubes (21).

Secretory vesicles associated with the dictyosome not only compart-

mentalize secretory product, but also may take part in the modification

of secretory product. Even though all lipoprotein particles in the liver

are within the size range of the very low density lipoprotein of serum
(280-800A, 8) there is an overall reduction of 24% in particle

diameter, comparing particles in vesicles from the forming face of the

Golgi apparatus and in free secretory vesicles. Lipoprotein particle sizes

differ across the stack of dictyosome cisternae, and a small additional

decrease appears to occur after the vesicles have been released from
the dictysome. This suggests that lipoprotein particles are trimmed
and/or condensed within vesicles at the dictyosome as well as within

vesicles free in the cytoplasm.
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